期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进SSD模型的设计与实现
1
作者 邓新龙 张会兵 +2 位作者 徐智 首照宇 刘明政 《计算机工程与设计》 北大核心 2023年第9期2874-2880,共7页
针对当下主流的目标检测模型在资源受限的嵌入式设备上无法实时检测的问题,提出一种平衡检测精度和检测速度的目标检测模型。在SSD模型的基础上,用轻量化网络MobileNetV3作为主干网络,降低特征提取时的计算耗时;通过特征融合将主干网络... 针对当下主流的目标检测模型在资源受限的嵌入式设备上无法实时检测的问题,提出一种平衡检测精度和检测速度的目标检测模型。在SSD模型的基础上,用轻量化网络MobileNetV3作为主干网络,降低特征提取时的计算耗时;通过特征融合将主干网络中的高层和低层特征进行融合作为预测输出层,使该特征输出包含丰富的分类和定位信息;针对嵌入式设备浮点计算效率低的问题,采用感知量化方法将模型的权重转换为INT8类型。实验结果表明,在嵌入式设备上采用Udacity数据集评估SSDLite-tiny模型,其精度(mAP)和帧数(FPS)分别达到了18.1和75.08。 展开更多
关键词 深度学习 目标检测 模型压缩 轻量化网络 特征融合 量化压缩 嵌入式
下载PDF
Outlier detection based on multi-dimensional clustering and local density
2
作者 shou zhao-yu LI Meng-ya LI Si-min 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1299-1306,共8页
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl... Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments. 展开更多
关键词 data MINING OUTLIER DETECTION OUTLIER DETECTION method based on MULTI-DIMENSIONAL CLUSTERING and local density (ODBMCLD) algorithm deviation DEGREE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部