Our primary objective is to mitigate the adverse effects of temperature fluctuations on the optical frequency transmission system by reducing the length of the interferometer.Following optimization,the phase-temperatu...Our primary objective is to mitigate the adverse effects of temperature fluctuations on the optical frequency transmission system by reducing the length of the interferometer.Following optimization,the phase-temperature coefficient of the optical system is reduced to approximately 1.35 fs/K.By applying a sophisticated temperature control to the remained“out-of-loop”optics fiber,the noise floor of the system has been effectively lowered to 10−21 level.Based on this performance-enhanced transfer system,we demonstrate coherent transmission of optical frequency through 500-km spooled fiber link.After being actively compensated,the transfer instability of 4.5×10^(−16) at the averaging time of 1 s and 5.6×10^(−21) at 10000 s is demonstrated.The frequency uncertainty of received light at remote site relative to that of the origin light at local site is achieved to be 1.15×10^(−19).This enhanced system configuration is particularly well suited for future long-distance frequency transmission and comparison of the most advanced optical clock signals.展开更多
We demonstrate the coherent transfer of an ultrastable optical frequency reference over a 490 km noisy field fiber link.The fiber-induced phase noise power spectrum density per-unit-length at 1 Hz offset frequency can...We demonstrate the coherent transfer of an ultrastable optical frequency reference over a 490 km noisy field fiber link.The fiber-induced phase noise power spectrum density per-unit-length at 1 Hz offset frequency can reach up to 510 rad^(2)·Hz^(-1)·km^(-1),which is much higher than the fiber noise observed in previous reports.This extreme level of phase noise is mainly due to the fiber link laying underground along the highway.Appropriate phaselocked loop parameters are chosen to complete the active compensation of fiber noise by measuring the intensity fluctuation of additional phase noise and designing a homemade digital frequency division phase discriminator with a large phase detection range of 2^(12)πrad.Finally,a noise suppression intensity of approximately 40 d B at1 Hz is obtained,with fractional frequency instability of 1.1×10^(-14 )at 1 s averaging time,and 3.7×10^(-19) at10000 s.The transfer system will be used for remote atomic clock comparisons and optical frequency distribution over a long-distance communication network established in China.展开更多
In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link pha...In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link phase noise caused by environmental effects.In this system,a 1×2 acousto-optic modulator(AOM)is applied at the remote site,with the first light being used to eliminate the noise of the remote time base and interface with remote users while the zeroth light is used to establish an active noise canceling loop.With this technique,a 10 MHz commercial oscillator,used as a time base at the remote site,does not contribute to the noise of the transferred signal.An experimental system is constructed using a 150 km fiber spool to validate the proposed technique.After compensation,the overlapping Allan deviation of the transfer link is 7.42×10^(-15)at 1 s integration time and scales down to 1.07×10^(-18)at 10,000 s integration time.The uncertainty of the transmitted optical frequency is on the order of a few 10-19.This significantly reduces the time-base requirements and costs for multi-user applications without compromising transfer accuracy.Meanwhile,these results show great potential for transferring ultra-stable optical frequency signals to remote sites,especially for point-to-multi-users.展开更多
We report an all-fiber telecom-band energy-time entangled biphoton source with all physical elements integrated into a compact cabinet.At a pump power of 800μW,the photon pairs generation rate reaches 6.9 MHz with th...We report an all-fiber telecom-band energy-time entangled biphoton source with all physical elements integrated into a compact cabinet.At a pump power of 800μW,the photon pairs generation rate reaches 6.9 MHz with the coincidence-toaccidental ratio[CAR]better than 1150.The long-term stability of the biphoton source is characterized by measuring the Hong-Ou-Mandel interference visibility and CAR within a continuous operation period of more than 10 h.Benefiting from the advantages of compact size,light weight,and high stability,this device provides a convenient resource for various field turnkey quantum communication and metrology applications.展开更多
With energy-time entangled biphoton sources as the optical carrier and time-correlated single-photon detection for high-speed radio frequency(RF)signal recovery,the method of quantum microwave photonics(QMWP)has prese...With energy-time entangled biphoton sources as the optical carrier and time-correlated single-photon detection for high-speed radio frequency(RF)signal recovery,the method of quantum microwave photonics(QMWP)has presented the unprecedented potential of nonlocal RF signal encoding and efficient RF signal distilling from the dispersion interference associated with ultrashort pulse carriers.In this paper,its capability in microwave signal processing and prospective superiority are further demonstrated.Both QMWP RF phase shifting and transversal filtering functionality,which are the fundamental building blocks of microwave signal processing,are realized.Besides good immunity to the dispersion-induced frequency fading effect associated with the broadband carrier in classical MWP,a native two-dimensional parallel microwave signal processor is provided.These results well demonstrate the superiority of QMWP over classical MWP and open the door to new application fields of MWP involving encrypted processing.展开更多
Based on gravity frequency shift effect predicted by general relativity theory, this study discusses an approach for determining the gravity potential(geopotential) difference between arbitrary two points P and Q by r...Based on gravity frequency shift effect predicted by general relativity theory, this study discusses an approach for determining the gravity potential(geopotential) difference between arbitrary two points P and Q by remote comparison of two precise optical clocks via optical fiber frequency transfer. After synchronization, by measuring the signal's frequency shift based upon the comparison of bidirectional frequency signals from P and Q oscillators connected with two optical atomic clocks via remote optical fiber frequency transfer technique, the geopotential difference between the two points could be determined, and its accuracy depends on the stabilities of the optical clocks and the frequency transfer comparison technique. Due to the fact that the present stability of optical clocks achieves 1.6×10-18 and the present frequency transfer comparison via optical fiber provides stabilities as high as 10-19 level, this approach is prospective to determine geopotential difference with an equivalent accuracy of 1.5 cm. In addition, since points P and Q are quite arbitrary, this approach may provide an alternative way to determine the geopotential over a continent, and prospective potential to unify a regional height datum system.展开更多
We propose and demonstrate an experimental implementation for the observation of magnetic fields from spatial features of absorption profiles in a warm atomic vapor.A radially polarized vector beam that traverses atom...We propose and demonstrate an experimental implementation for the observation of magnetic fields from spatial features of absorption profiles in a warm atomic vapor.A radially polarized vector beam that traverses atomic vapor will generate an absorption pattern with a petal-like structure by the mediation of a transverse magnetic field(TMF).The spatial absorption pattern rotates when the azimuthal angle of the TMF is changed,while its contrast decreases when the longitudinal component of the magnetic field increases.By analyzing the intensity distribution of the transmitted pattern,we can determine the magnetic field strength.Our work provides a framework for investigating 3 D magnetic field distributions based on atoms.展开更多
With the rapid development of microwave photonics technology, high-speed processing and ultra-weak signal detection capability have become the main bottlenecks in many applications. Thanks to the ultraweak signal dete...With the rapid development of microwave photonics technology, high-speed processing and ultra-weak signal detection capability have become the main bottlenecks in many applications. Thanks to the ultraweak signal detection capability and the extremely low timing jitter properties of single-photon detectors, the combination of single-photon detection and classical microwave photonics technology may provide a solution to break the above bottlenecks. In this paper, we first report a novel concept of singlephoton microwave photonics(SP-MWP), a SP-MWP signal processing system with phase shifting and frequency filtering functionalities is demonstrated based on a superconducting nanowire single photon detector(SNSPD) and a successive time-correlated single photon counting(TCSPC) module.Experimental results show that an ultrahigh optical sensitivity down to-100 d Bm has been achieved,and the signal processing bandwidth is only limited by the timing jitter of single-photon detectors. In the meantime, the proposed system demonstrates an ultrahigh anti-interference capability, only the signal which is phase locked by the trigger signal in TCSPC can be extracted from the detected signals combining with noise and strong interference. The proposed SP-MWP concept paves a way to a novel interdisciplinary field of microwave photonics and quantum mechanism, named by quantum microwave photonics.展开更多
A hertz-linewidth ultra-stable laser(USL), which will be used to detect the clock transition line, in a strontium optical clock will be launched into the China Space Station(CSS) in late 2022. As the core of the USL, ...A hertz-linewidth ultra-stable laser(USL), which will be used to detect the clock transition line, in a strontium optical clock will be launched into the China Space Station(CSS) in late 2022. As the core of the USL, an interference-filter-based externalcavity diode laser(IF-ECDL) was developed. The IF-ECDL has a compact, stable, and environmentally insensitive design.Performances of the IF-ECDL are presented. The developed IF-ECDL can pass the aerospace environmental tests, indicating that the IF-ECDL can be suitable for space missions in the CSS.展开更多
A vapor cell provides a well-controlled and stable inner atmosphere for atomic sensors,such as atomic gyroscopes,atomic magnetometers,and atomic clocks,and its hermeticity affects the stability and aging of atomic sen...A vapor cell provides a well-controlled and stable inner atmosphere for atomic sensors,such as atomic gyroscopes,atomic magnetometers,and atomic clocks,and its hermeticity affects the stability and aging of atomic sensors.We present the micro-fabrication of a micro-electromechanical system wafer-level hermit vapor cell based on deep reactive ion etching and vacuum anodic-bonding technology.The anodic-bonding process with the voltage increasing in steps of 200 V had a critical influence on vapor cell hermeticity.Further,the siliconglass bonding surface was experimentally investigated by a scanning electron microscope,which illustrated that there were no visual cracks and defects in the bonding surface.The leak rate was measured using a helium leak detector.The result shows that the vapor cells with different optical cavity lengths comply with the MIL-STD-883E standard(5×10^-8 mbar·L/s).Moreover,D2 absorption spectroscopy was characterized via optical absorption.The bonding strength was determined to be 13 MPa,which further verified the quality of the vapor cells.展开更多
As the main branch of microwave photonics,radio-over-fiber technology provides high bandwidth,low-loss,and long-distance propagation capability,facilitating wide applications ranging from telecommunication to wireless...As the main branch of microwave photonics,radio-over-fiber technology provides high bandwidth,low-loss,and long-distance propagation capability,facilitating wide applications ranging from telecommunication to wireless networks.With ultrashort pulses as the optical carrier,a large capacity is further endowed.However,the wide bandwidth of ultrashort pulses results in the severe vulnerability of high-frequency radio frequency(RF)signals to fiber dispersion.With a time-energy entangled biphoton source as the optical carrier combined with the singlephoton detection technique,a quantum microwave photonics method in radio-over-fiber systems is proposed and demonstrated experimentally.The results show that it not only realizes unprecedented nonlocal RF signal modulation with strong resistance to the dispersion but also provides an alternative mechanism to distill the RF signal out from the dispersion effectively.Furthermore,the spurious-free dynamic ranges of the nonlocally modulated and distilled RF signals have been significantly improved.With the ultra-weak detection and the high-speed processing advantages endowed by the low-timing-jitter single-photon detection,the quantum microwave photonics method opens new possibilities in modern communication and networks.展开更多
We demonstrate a proposal for making an ultrastable laser referenced to a multi-cavity, enabling a lower thermal noise limit due to the averaging effect. In comparison with a single-cavity system, relative frequency i...We demonstrate a proposal for making an ultrastable laser referenced to a multi-cavity, enabling a lower thermal noise limit due to the averaging effect. In comparison with a single-cavity system, relative frequency instability of the synthesized laser can be improved by a factor of the square root of the cavity number. We perform an experiment to simulate a two-cavity system with two independent ultrastable lasers. Experimental results show that the relative frequency instability(Allan deviation) of the synthesized laser is 5 × 10^(-16), improved by a factor of √2 from a single-cavity-stabilized laser.展开更多
Strong environmental dependence is an intractable problem for vapor cell clocks,for which the high-temperature sensitivity of the physics package is considered one of the dominant reasons.In this paper,we report the d...Strong environmental dependence is an intractable problem for vapor cell clocks,for which the high-temperature sensitivity of the physics package is considered one of the dominant reasons.In this paper,we report the design and realization of a low-temperature-sensitive physics package for vapor cell clocks.The physics package comprises three layers of magnetic shields,three layers of heating ovens,and the cavity-cell assembly.The cavity-cell assembly employs a compact magnetron-type cavity and a Rb vapor cell sealed with N2-Ar mixed buffer gas.The dependence of the clock frequency on temperature fluctuation is evaluated to be 2×10^(−11)/℃.In pursuit of the stable temperature,a three-stage temperature regulator is implemented on the physics package.It adopts a combination of open andclosed-loop control to address the problem of significant thermal coupling between the heating ovens.Under a laboratory environment,the measured Hadamard deviation of the temperature variation is 4×10^(−5)℃in 1 day of averaging.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12303076 and 12303077).
文摘Our primary objective is to mitigate the adverse effects of temperature fluctuations on the optical frequency transmission system by reducing the length of the interferometer.Following optimization,the phase-temperature coefficient of the optical system is reduced to approximately 1.35 fs/K.By applying a sophisticated temperature control to the remained“out-of-loop”optics fiber,the noise floor of the system has been effectively lowered to 10−21 level.Based on this performance-enhanced transfer system,we demonstrate coherent transmission of optical frequency through 500-km spooled fiber link.After being actively compensated,the transfer instability of 4.5×10^(−16) at the averaging time of 1 s and 5.6×10^(−21) at 10000 s is demonstrated.The frequency uncertainty of received light at remote site relative to that of the origin light at local site is achieved to be 1.15×10^(−19).This enhanced system configuration is particularly well suited for future long-distance frequency transmission and comparison of the most advanced optical clock signals.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFF0200200)the National Natural Science Foundation of China(Grant Nos.91636101,12103059,91836301,and 11803041)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ)the West Light Foundation of the Chinese Academy of Sciences(Grant No.XAB2016B47)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21000000)。
文摘We demonstrate the coherent transfer of an ultrastable optical frequency reference over a 490 km noisy field fiber link.The fiber-induced phase noise power spectrum density per-unit-length at 1 Hz offset frequency can reach up to 510 rad^(2)·Hz^(-1)·km^(-1),which is much higher than the fiber noise observed in previous reports.This extreme level of phase noise is mainly due to the fiber link laying underground along the highway.Appropriate phaselocked loop parameters are chosen to complete the active compensation of fiber noise by measuring the intensity fluctuation of additional phase noise and designing a homemade digital frequency division phase discriminator with a large phase detection range of 2^(12)πrad.Finally,a noise suppression intensity of approximately 40 d B at1 Hz is obtained,with fractional frequency instability of 1.1×10^(-14 )at 1 s averaging time,and 3.7×10^(-19) at10000 s.The transfer system will be used for remote atomic clock comparisons and optical frequency distribution over a long-distance communication network established in China.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB21000000)the Open Project Fund of State Key Laboratory of Transient Optics and Photonics,Chinese Academy of Sciences(No.SKLST202011)+1 种基金the National Natural Science Foundation of China(Nos.12103059,12103059,12303076,and 12303077)the Planned Project of Xi’an Bureau of Science and Technology,China(No.E019XK104).
文摘In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link phase noise caused by environmental effects.In this system,a 1×2 acousto-optic modulator(AOM)is applied at the remote site,with the first light being used to eliminate the noise of the remote time base and interface with remote users while the zeroth light is used to establish an active noise canceling loop.With this technique,a 10 MHz commercial oscillator,used as a time base at the remote site,does not contribute to the noise of the transferred signal.An experimental system is constructed using a 150 km fiber spool to validate the proposed technique.After compensation,the overlapping Allan deviation of the transfer link is 7.42×10^(-15)at 1 s integration time and scales down to 1.07×10^(-18)at 10,000 s integration time.The uncertainty of the transmitted optical frequency is on the order of a few 10-19.This significantly reduces the time-base requirements and costs for multi-user applications without compromising transfer accuracy.Meanwhile,these results show great potential for transferring ultra-stable optical frequency signals to remote sites,especially for point-to-multi-users.
基金supported by the National Natural Science Foundation of China(Nos.12033007,61875205,91836301,12103058,and 61801458)the Western Young Scholar Project of CAS(Nos.XAB2019B17 and XAB2019B15)+2 种基金the Frontier Science Key Research Project of CAS(No.QYZDB-SSWSLH007)the Strategic Priority Research Program of CAS(No.XDC07020200)the Youth Innovation Promotion Association,CAS(Nos.2022413 and 2021408)。
文摘We report an all-fiber telecom-band energy-time entangled biphoton source with all physical elements integrated into a compact cabinet.At a pump power of 800μW,the photon pairs generation rate reaches 6.9 MHz with the coincidence-toaccidental ratio[CAR]better than 1150.The long-term stability of the biphoton source is characterized by measuring the Hong-Ou-Mandel interference visibility and CAR within a continuous operation period of more than 10 h.Benefiting from the advantages of compact size,light weight,and high stability,this device provides a convenient resource for various field turnkey quantum communication and metrology applications.
基金National Natural Science Foundation of China(12033007,12103058,61801458,61875205,91836301)Key Project of Frontier Science Research of Chinese Academy of Sciences(QYZDB-SSW-SLH007)+1 种基金Strategic Priority Research Program of Chinese Academy of Sciences(XDC07020200)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021408,2022413)。
文摘With energy-time entangled biphoton sources as the optical carrier and time-correlated single-photon detection for high-speed radio frequency(RF)signal recovery,the method of quantum microwave photonics(QMWP)has presented the unprecedented potential of nonlocal RF signal encoding and efficient RF signal distilling from the dispersion interference associated with ultrashort pulse carriers.In this paper,its capability in microwave signal processing and prospective superiority are further demonstrated.Both QMWP RF phase shifting and transversal filtering functionality,which are the fundamental building blocks of microwave signal processing,are realized.Besides good immunity to the dispersion-induced frequency fading effect associated with the broadband carrier in classical MWP,a native two-dimensional parallel microwave signal processor is provided.These results well demonstrate the superiority of QMWP over classical MWP and open the door to new application fields of MWP involving encrypted processing.
基金supported by the National Natural Science Foundation of China (Nos. 41631072, 41721003, 41574007, and 41429401)the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics (No. B17033)+1 种基金the DAAD Thematic Network Project (No. 57173947)the International Space Science Institute (ISSI) 2017–2019
文摘Based on gravity frequency shift effect predicted by general relativity theory, this study discusses an approach for determining the gravity potential(geopotential) difference between arbitrary two points P and Q by remote comparison of two precise optical clocks via optical fiber frequency transfer. After synchronization, by measuring the signal's frequency shift based upon the comparison of bidirectional frequency signals from P and Q oscillators connected with two optical atomic clocks via remote optical fiber frequency transfer technique, the geopotential difference between the two points could be determined, and its accuracy depends on the stabilities of the optical clocks and the frequency transfer comparison technique. Due to the fact that the present stability of optical clocks achieves 1.6×10-18 and the present frequency transfer comparison via optical fiber provides stabilities as high as 10-19 level, this approach is prospective to determine geopotential difference with an equivalent accuracy of 1.5 cm. In addition, since points P and Q are quite arbitrary, this approach may provide an alternative way to determine the geopotential over a continent, and prospective potential to unify a regional height datum system.
基金National Natural Science Foundation of China(11534008,11574247,11604257,11774286,92050103)Fundamental Research Funds for the Central Universities+1 种基金H2020 Marie Sk?odowska-Curie Actions(721465)Nemzeti Kutatási Fejlesztésiés Innovációs Hivatal(NKFIH)(2017-1.2.1-NKP-2017-00001)。
文摘We propose and demonstrate an experimental implementation for the observation of magnetic fields from spatial features of absorption profiles in a warm atomic vapor.A radially polarized vector beam that traverses atomic vapor will generate an absorption pattern with a petal-like structure by the mediation of a transverse magnetic field(TMF).The spatial absorption pattern rotates when the azimuthal angle of the TMF is changed,while its contrast decreases when the longitudinal component of the magnetic field increases.By analyzing the intensity distribution of the transmitted pattern,we can determine the magnetic field strength.Our work provides a framework for investigating 3 D magnetic field distributions based on atoms.
基金supported by the National Key Research and Development Program of China (2018YFB2201902, 2018YFB2201901, and 2018YFB2201903)partly supported by the National Natural Science Foundation of China (61925505, 61535012, 61705217, 12033007, 61875205, 61801458, and 91836301)+1 种基金Frontier Science Key Research Project of CAS (QYZDB-SSW-SLH007)Strategic Priority Research Program of CAS (XDC07020200)
文摘With the rapid development of microwave photonics technology, high-speed processing and ultra-weak signal detection capability have become the main bottlenecks in many applications. Thanks to the ultraweak signal detection capability and the extremely low timing jitter properties of single-photon detectors, the combination of single-photon detection and classical microwave photonics technology may provide a solution to break the above bottlenecks. In this paper, we first report a novel concept of singlephoton microwave photonics(SP-MWP), a SP-MWP signal processing system with phase shifting and frequency filtering functionalities is demonstrated based on a superconducting nanowire single photon detector(SNSPD) and a successive time-correlated single photon counting(TCSPC) module.Experimental results show that an ultrahigh optical sensitivity down to-100 d Bm has been achieved,and the signal processing bandwidth is only limited by the timing jitter of single-photon detectors. In the meantime, the proposed system demonstrates an ultrahigh anti-interference capability, only the signal which is phase locked by the trigger signal in TCSPC can be extracted from the detected signals combining with noise and strong interference. The proposed SP-MWP concept paves a way to a novel interdisciplinary field of microwave photonics and quantum mechanism, named by quantum microwave photonics.
基金This work was supported by the National Key R&D Program of China(No.2020YFC2201300)the National Natural Science Foundation of China(No.11903041)。
文摘A hertz-linewidth ultra-stable laser(USL), which will be used to detect the clock transition line, in a strontium optical clock will be launched into the China Space Station(CSS) in late 2022. As the core of the USL, an interference-filter-based externalcavity diode laser(IF-ECDL) was developed. The IF-ECDL has a compact, stable, and environmentally insensitive design.Performances of the IF-ECDL are presented. The developed IF-ECDL can pass the aerospace environmental tests, indicating that the IF-ECDL can be suitable for space missions in the CSS.
基金supported by the National Key Research and Development Program of China(No.2017YFB0503200)the National Natural Science Foundation of China(Nos.61675185 and 61875250)the Natural Science Foundation of Shanxi Province(No.201701D121065)
文摘A vapor cell provides a well-controlled and stable inner atmosphere for atomic sensors,such as atomic gyroscopes,atomic magnetometers,and atomic clocks,and its hermeticity affects the stability and aging of atomic sensors.We present the micro-fabrication of a micro-electromechanical system wafer-level hermit vapor cell based on deep reactive ion etching and vacuum anodic-bonding technology.The anodic-bonding process with the voltage increasing in steps of 200 V had a critical influence on vapor cell hermeticity.Further,the siliconglass bonding surface was experimentally investigated by a scanning electron microscope,which illustrated that there were no visual cracks and defects in the bonding surface.The leak rate was measured using a helium leak detector.The result shows that the vapor cells with different optical cavity lengths comply with the MIL-STD-883E standard(5×10^-8 mbar·L/s).Moreover,D2 absorption spectroscopy was characterized via optical absorption.The bonding strength was determined to be 13 MPa,which further verified the quality of the vapor cells.
基金National Natural Science Foundation of China(12033007,12103058,61535012,61705217,61801458,61875205,61925505,91836301)National Key Research and Development Program of China(2018YFB2201901,2018YFB2201902,2018YFB2201903)+3 种基金Key Project of Frontier Science Research of Chinese Academy of Sciences(QYZDB-SW-SLH007)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021408)Western Young Scholar Project of Chinese Academy of Sciences(XAB2019B15,XAB2019B17)Strategic Priority Research Program of Chinese Academy of Sciences(XDC07020200)。
文摘As the main branch of microwave photonics,radio-over-fiber technology provides high bandwidth,low-loss,and long-distance propagation capability,facilitating wide applications ranging from telecommunication to wireless networks.With ultrashort pulses as the optical carrier,a large capacity is further endowed.However,the wide bandwidth of ultrashort pulses results in the severe vulnerability of high-frequency radio frequency(RF)signals to fiber dispersion.With a time-energy entangled biphoton source as the optical carrier combined with the singlephoton detection technique,a quantum microwave photonics method in radio-over-fiber systems is proposed and demonstrated experimentally.The results show that it not only realizes unprecedented nonlocal RF signal modulation with strong resistance to the dispersion but also provides an alternative mechanism to distill the RF signal out from the dispersion effectively.Furthermore,the spurious-free dynamic ranges of the nonlocally modulated and distilled RF signals have been significantly improved.With the ultra-weak detection and the high-speed processing advantages endowed by the low-timing-jitter single-photon detection,the quantum microwave photonics method opens new possibilities in modern communication and networks.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.91536217and 91336101)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2015334)the Special Funds for Scientific Equipment Development(No.YZ201518) from the Chinese Academy of Sciences for the use of the developed equipment
文摘We demonstrate a proposal for making an ultrastable laser referenced to a multi-cavity, enabling a lower thermal noise limit due to the averaging effect. In comparison with a single-cavity system, relative frequency instability of the synthesized laser can be improved by a factor of the square root of the cavity number. We perform an experiment to simulate a two-cavity system with two independent ultrastable lasers. Experimental results show that the relative frequency instability(Allan deviation) of the synthesized laser is 5 × 10^(-16), improved by a factor of √2 from a single-cavity-stabilized laser.
基金the National Natural Science Foundation of China under Grant No.11703031,U1731132in part by the West Light Foundation of the Chinese Academy of Sciences under Grant No.XAB2017B04.
文摘Strong environmental dependence is an intractable problem for vapor cell clocks,for which the high-temperature sensitivity of the physics package is considered one of the dominant reasons.In this paper,we report the design and realization of a low-temperature-sensitive physics package for vapor cell clocks.The physics package comprises three layers of magnetic shields,three layers of heating ovens,and the cavity-cell assembly.The cavity-cell assembly employs a compact magnetron-type cavity and a Rb vapor cell sealed with N2-Ar mixed buffer gas.The dependence of the clock frequency on temperature fluctuation is evaluated to be 2×10^(−11)/℃.In pursuit of the stable temperature,a three-stage temperature regulator is implemented on the physics package.It adopts a combination of open andclosed-loop control to address the problem of significant thermal coupling between the heating ovens.Under a laboratory environment,the measured Hadamard deviation of the temperature variation is 4×10^(−5)℃in 1 day of averaging.