In order to further optimize the cultivation and agronomic technology of Guilin Maojian tea gardens, the effects, efficiencies and costs of different farming methods and their effects on the physiochemical properties ...In order to further optimize the cultivation and agronomic technology of Guilin Maojian tea gardens, the effects, efficiencies and costs of different farming methods and their effects on the physiochemical properties of tea garden soil were studied through the modification of the test sites with the non-farming land as the control. The results showed that human farming, mini-tiller farming and crawler tractor farming could improve the physical and chemical properties of soil. After farming, the soil had good water retention but low moisture content compared to the control group, while the soil bulk density and hardness value were significantly lower than those of the control, and the porosity of soil was significantly higher than that of contrast. With the passage of time, soil bulk density and hardness value gradually increased after farming, while the porosity of soil decreased gradually. There were great differences in the effects, efficiencies and costs of different farming methods. Crawler tractor had the best and most stable farming effect, and the operation efficiency was 10 times that of human farming while the cost was only 0.39 times of human farming. Therefore, it was feasible to adopt mini-tiller or crawler tractor to carry out mechanical farming of Guilin Maojian tea garden, which provided theoretical references for the soil property improvement using mechanical farming and was favorable for promoting the popularization of farming machines and the acceleration of mechanization of tea gardens. But for tea plantations that are intended to be mechanized, apart from the mechanical and technical personnel to be configured in place, the site conditions, planting modes and mechanical way reservation of tea garden should be planned accordingly. It is recommended to select flat or gentle slope for reclamation, and preference is given to non-sexual tea tree varieties with big line spacing over 180 cm long. Moreover, the main road construction should be more than 3.0 m, and trunk road 2.0 m or above. And isolation ditch and drain should be set between the tea garden and the surrounding mountain forests and farmland.展开更多
Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric atta...Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation.Additionally,the reliability of guidance from static teachers diminishes as target models become more robust.This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation(LDAS&ET-AD).Firstly,a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation.A strategy model is introduced to produce attack strategies that enable adversarial examples(AEs)to be created in areas where the target model significantly diverges from the teachers by competing with the target model in minimizing or maximizing the AD loss.Secondly,a teacher evolution strategy is introduced to enhance the reliability and effectiveness of knowledge in improving the generalization performance of the target model.By calculating the experimentally updated target model’s validation performance on both clean samples and AEs,the impact of distillation from each training sample and AE on the target model’s generalization and robustness abilities is assessed to serve as feedback to fine-tune standard and robust teachers accordingly.Experiments evaluate the performance of LDAS&ET-AD against different adversarial attacks on the CIFAR-10 and CIFAR-100 datasets.The experimental results demonstrate that the proposed method achieves a robust precision of 45.39%and 42.63%against AutoAttack(AA)on the CIFAR-10 dataset for ResNet-18 and MobileNet-V2,respectively,marking an improvement of 2.31%and 3.49%over the baseline method.In comparison to state-of-the-art adversarial defense techniques,our method surpasses Introspective Adversarial Distillation,the top-performing method in terms of robustness under AA attack for the CIFAR-10 dataset,with enhancements of 1.40%and 1.43%for ResNet-18 and MobileNet-V2,respectively.These findings demonstrate the effectiveness of our proposed method in enhancing the robustness of deep learning networks(DNNs)against prevalent adversarial attacks when compared to other competing methods.In conclusion,LDAS&ET-AD provides reliable and informative soft labels to one of the most promising defense methods,AT,alleviating the limitations of untrusted teachers and unsuitable AEs in existing AD techniques.We hope this paper promotes the development of DNNs in real-world trust-sensitive fields and helps ensure a more secure and dependable future for artificial intelligence systems.展开更多
Superhydrophobic surfaces with water-repelling ability have important applications, such as self-cleaning, antibacterial and corrosion protection. However, the using of harmful fluorinated materials and its poor mecha...Superhydrophobic surfaces with water-repelling ability have important applications, such as self-cleaning, antibacterial and corrosion protection. However, the using of harmful fluorinated materials and its poor mechanochemical stability limit its practical application. Herein, a fluorine-free, robust and self-healing superhydrophobic surface is prepared through a two-step method of laser processing and spraying coating for anticorrosion and antibacterial applications. Laser processing is used to construct periodic micron-sized pillars for obtaining strong interface bonding between coating and substrate by mechanical interlocking effect, and as an ‘armor’, preventing the removal of the coating. The coating consists of epoxy resin (EP), hexadecyltrimethoxysilane (HDTMS) and γ-aminopropyltriethoxysilane treated Cu2O (KH550-Cu2O). The superhydrophobic surface can withstand various mechanical durability tests, such as multiple sandpaper abrasion and tape peeling cycles. It exhibits excellent corrosion inhibition efficiency (ηp > 99 %) on Mg alloy, Tinplate and Al alloy, which results from superhydrophobicity and organic coating. The superhydrophobicity endows surface with excellent antibacterial adhesion performance in a static liquid environment. The bactericidal activity of KH550-Cu2O can effectively inactivate the bacteria in contact with the surface and the free bacteria, providing excellent antibacterial ability in a dynamic liquid environment. It still exhibits good anticorrosion and antibacterial abilities after multiple mechanical abrasion cycles due to the outstanding mechanical durability. Moreover, it exhibits outstanding self-healing ability to plasma etching and oil contamination, self-cleaning ability under air and oil conditions, and chemical stability against acids and alkalis solution. All the above excellent performances promote its application in a wider range of fields.展开更多
In order to satisfy the needs of different applications and more complex intelligent devices,smart control of surface wettability will be necessary and desirable,which gradually become a hot spot and focus in the fiel...In order to satisfy the needs of different applications and more complex intelligent devices,smart control of surface wettability will be necessary and desirable,which gradually become a hot spot and focus in the field of interface wetting.Herein,we review interfacial wetting states related to switchable wettability on superwettable materials,including several classical wetting models and liquid adhesive behaviors based on the surface of natural creatures with special wettability.This review mainly focuses on the recent developments of the smart surfaces with switchable wettability and the corresponding regulatory mechanisms under external stimuli,which is mainly governed by the transformation of surface chemical composition and geometrical structures.Among that,various external stimuli such as physical stimulation(temperature,light,electric,magnetic,mechanical stress),chemical stimulation(pH,ion,solvent)and dual or multi-triggered stimulation have been sought out to realize the regulation of surface wettability.Moreover,we also summarize the applications of smart surfaces in different fields,such as oil/water separation,programmable transportation,anti-biofouling,detection and delivery,smart soft robotic etc.Furthermore,current limitations and future perspective in the development of smart wetting surfaces are also given.This review aims to offer deep insights into the recent developments and responsive mechanisms in smart biomimetic surfaces with switchable wettability under external various stimuli,so as to provide a guidance for the design of smart surfaces and expand the scope of both fundamental research and practical applications.展开更多
Multimode waveguide bend is one of the key components for realizing high-density mode-division multiplexing systems on chip.However,the reported multimode waveguide bends are either large,bandwidth-limited or fabricat...Multimode waveguide bend is one of the key components for realizing high-density mode-division multiplexing systems on chip.However,the reported multimode waveguide bends are either large,bandwidth-limited or fabrication-complicated,which hinders their applications in future high-density multimode photonic circuits.Here we propose a compact multimode waveguide bend supporting four TE modes simply by shape-optimizing with transformation optics.The shape of the waveguide is optimized in the virtual space with gradient distribution of the refractive index,so that the scattering loss and intermode cross talk are well suppressed.After conformal mapping back into the physical space,a compact(effective radius of 17μm)multimode bending waveguide is obtained.Simulations show that the proposed multimode waveguide bend has little loss(<0.1 dB)and low cross talk(<−20 dB)throughout an ultrabroad wavelength range of 1.16–1.66μm.We also fabricated the shape-optimized multimode bending waveguide on a silicon-on-insulator wafer.At 1550 nm wavelength,the measured excess losses for the four lowest-order TE modes are less than 0.6 dB,and the intermode cross talks are all below−17 dB.Our study paves the way for realizing high-density and large-scale multimode integrated optical circuits for optical interconnect.展开更多
Recent years have witnessed significant progress in quantum communication and quantum internet with the emerging quantum photonic chips,whose characteristics of scalability,stability,and low cost,flourish and open up ...Recent years have witnessed significant progress in quantum communication and quantum internet with the emerging quantum photonic chips,whose characteristics of scalability,stability,and low cost,flourish and open up new possibilities in miniaturized footprints.Here,we provide an overview of the advances in quantum photonic chips for quantum communication,beginning with a summary of the prevalent photonic integrated fabrication platforms and key components for integrated quantum communication systems.We then discuss a range of quantum communication applications,such as quantum key distribution and quantum teleportation.Finally,the review culminates with a perspective on challenges towards high-performance chip-based quantum communication,as well as a glimpse into future opportunities for integrated quantum networks.展开更多
A bounce universe model with a scale-invariant and stable spectrum of primordial density perturbations was constructed using a consistent truncation of the D-brane dynamics from Type IIB string theory. A coupling was ...A bounce universe model with a scale-invariant and stable spectrum of primordial density perturbations was constructed using a consistent truncation of the D-brane dynamics from Type IIB string theory. A coupling was introduced between the tachyon field and the adjoint Higgs field on the D3-branes to lock the tachyon at the top of its potential hill and to model the bounce process,which is known as the Coupled Scalar and Tachyon Bounce(CSTB) Universe. The CSTB model has been shown to be ghost free,and it fulfils the null energy condition; in addition, it can also solve the Big Bang cosmic singularity problem. In this paper we conduct an extensive follow-up study of the parameter space of the CSTB model. In particular we are interested in the parameter values that can produce a single bounce to arrive at a radiation-dominated universe. We further establish that the CSTB universe is a viable alternative to inflation, as it can naturally produce a sufficient number of e-foldings in the locked inflation epoch and in the post-bounce expansion to overcome the four fundamental limitations of the Big Bang cosmology, which are flatness, horizon,homogeneity and singularity, resulting in a universe of the current size.展开更多
Gold nanoparticles (Au NPs) have been widely utilized in biomedical appli- cations owing to their attractive features and biocompatibility, which greatly increase the risk of humans" being exposed to Au NPs, includ...Gold nanoparticles (Au NPs) have been widely utilized in biomedical appli- cations owing to their attractive features and biocompatibility, which greatly increase the risk of humans" being exposed to Au NPs, including pregnant women. In contrast to mature cells, embryos are more susceptible to outside disruptive stimuli. Nonetheless, a possible inhibitory effect of nanomaterials on embryonic development is usually ignored as long as the NPs do not have significant cytotoxic effects. According to our results, a minimal "nontoxic" concentration of Au NPs during early pregnancy can have lethal inhibitory effects on embryos in vivo and in vitro. We conducted important experiments on the influence of Au NPs on embryonic development and found that Au NPs can disturb embryonic development in a size- and concentration-dependent manner. Au NPs of 15 nm in diameter downregulated the expression pattern of distinct germ layer markers both at mRNA and protein levels; this action prevented differentiation of all three embryonic germ layers. Consequentl~ fetal resorption was observed. Our work reveals the impact of Au NPs on embryonic development and will provide an important guidance and serve as a reference for biomedical applications of Au NPs with minimal side effects.展开更多
A fluorine-free and multifunctional superhydrophobic coating(r-MSC)was prepared by the one-step spraying method.The coating had superhydrophobic and low-adhesion properties with the water contact angle of 161.5°�...A fluorine-free and multifunctional superhydrophobic coating(r-MSC)was prepared by the one-step spraying method.The coating had superhydrophobic and low-adhesion properties with the water contact angle of 161.5°�1°and the sliding angle of 3.2°�0.5°.It could be prepared by spraying while maintaining superhydrophobic surface characteristics on any substrates.The coating owed outstanding mechanical durability and chemical stability.Moreover,the coating also possessed the ability of self-cleaning,anti-fouling,anti-icing,and flame retardant ability.Importantly,the presence of multifunc-tional coating endowed the substrate with both water-resistant and fireproof properties.Besides,it also showed excellent oil-water separation ability,which presented the oil-water separation efficiency of over 90%for different types of oils after 10 separation cycles.Furthermore,the coating could improve corrosion inhibition performance and the corrosion current density was reduced by two orders of magnitude from the polarization curve.The r-MSC had the advantages of simple preparation,fluorine-free,environ-mentally friendly and appropriate for large-area fabrication,which could be applied to various fields.展开更多
基金Supported by the Planned Project for Science and Technology Development of Guilin City,China(20150117-2)the Special Fund for the Basic Research Operating Expenses Program of Public Welfare Research Institute Directly Subordinate to Guangxi,China(GCJB-16-18)
文摘In order to further optimize the cultivation and agronomic technology of Guilin Maojian tea gardens, the effects, efficiencies and costs of different farming methods and their effects on the physiochemical properties of tea garden soil were studied through the modification of the test sites with the non-farming land as the control. The results showed that human farming, mini-tiller farming and crawler tractor farming could improve the physical and chemical properties of soil. After farming, the soil had good water retention but low moisture content compared to the control group, while the soil bulk density and hardness value were significantly lower than those of the control, and the porosity of soil was significantly higher than that of contrast. With the passage of time, soil bulk density and hardness value gradually increased after farming, while the porosity of soil decreased gradually. There were great differences in the effects, efficiencies and costs of different farming methods. Crawler tractor had the best and most stable farming effect, and the operation efficiency was 10 times that of human farming while the cost was only 0.39 times of human farming. Therefore, it was feasible to adopt mini-tiller or crawler tractor to carry out mechanical farming of Guilin Maojian tea garden, which provided theoretical references for the soil property improvement using mechanical farming and was favorable for promoting the popularization of farming machines and the acceleration of mechanization of tea gardens. But for tea plantations that are intended to be mechanized, apart from the mechanical and technical personnel to be configured in place, the site conditions, planting modes and mechanical way reservation of tea garden should be planned accordingly. It is recommended to select flat or gentle slope for reclamation, and preference is given to non-sexual tea tree varieties with big line spacing over 180 cm long. Moreover, the main road construction should be more than 3.0 m, and trunk road 2.0 m or above. And isolation ditch and drain should be set between the tea garden and the surrounding mountain forests and farmland.
基金the National Key Research and Development Program of China(2021YFB1006200)Major Science and Technology Project of Henan Province in China(221100211200).Grant was received by S.Li.
文摘Adversarial distillation(AD)has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training.However,fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation.Additionally,the reliability of guidance from static teachers diminishes as target models become more robust.This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation(LDAS&ET-AD).Firstly,a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation.A strategy model is introduced to produce attack strategies that enable adversarial examples(AEs)to be created in areas where the target model significantly diverges from the teachers by competing with the target model in minimizing or maximizing the AD loss.Secondly,a teacher evolution strategy is introduced to enhance the reliability and effectiveness of knowledge in improving the generalization performance of the target model.By calculating the experimentally updated target model’s validation performance on both clean samples and AEs,the impact of distillation from each training sample and AE on the target model’s generalization and robustness abilities is assessed to serve as feedback to fine-tune standard and robust teachers accordingly.Experiments evaluate the performance of LDAS&ET-AD against different adversarial attacks on the CIFAR-10 and CIFAR-100 datasets.The experimental results demonstrate that the proposed method achieves a robust precision of 45.39%and 42.63%against AutoAttack(AA)on the CIFAR-10 dataset for ResNet-18 and MobileNet-V2,respectively,marking an improvement of 2.31%and 3.49%over the baseline method.In comparison to state-of-the-art adversarial defense techniques,our method surpasses Introspective Adversarial Distillation,the top-performing method in terms of robustness under AA attack for the CIFAR-10 dataset,with enhancements of 1.40%and 1.43%for ResNet-18 and MobileNet-V2,respectively.These findings demonstrate the effectiveness of our proposed method in enhancing the robustness of deep learning networks(DNNs)against prevalent adversarial attacks when compared to other competing methods.In conclusion,LDAS&ET-AD provides reliable and informative soft labels to one of the most promising defense methods,AT,alleviating the limitations of untrusted teachers and unsuitable AEs in existing AD techniques.We hope this paper promotes the development of DNNs in real-world trust-sensitive fields and helps ensure a more secure and dependable future for artificial intelligence systems.
基金financially supported by the National Natural Science Foundation of China(Nos.U2106226,U22A0183,52105297)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52021003)+2 种基金the Science and Technology Development Project of Jilin Province(Nos.20210203022SF,20210508029RQ)the JLU Science and Technology Innovative Research Team(No.2020TD-03)the Project funded by China Postdoctoral Science Foundation(No.2022TQ0117).
文摘Superhydrophobic surfaces with water-repelling ability have important applications, such as self-cleaning, antibacterial and corrosion protection. However, the using of harmful fluorinated materials and its poor mechanochemical stability limit its practical application. Herein, a fluorine-free, robust and self-healing superhydrophobic surface is prepared through a two-step method of laser processing and spraying coating for anticorrosion and antibacterial applications. Laser processing is used to construct periodic micron-sized pillars for obtaining strong interface bonding between coating and substrate by mechanical interlocking effect, and as an ‘armor’, preventing the removal of the coating. The coating consists of epoxy resin (EP), hexadecyltrimethoxysilane (HDTMS) and γ-aminopropyltriethoxysilane treated Cu2O (KH550-Cu2O). The superhydrophobic surface can withstand various mechanical durability tests, such as multiple sandpaper abrasion and tape peeling cycles. It exhibits excellent corrosion inhibition efficiency (ηp > 99 %) on Mg alloy, Tinplate and Al alloy, which results from superhydrophobicity and organic coating. The superhydrophobicity endows surface with excellent antibacterial adhesion performance in a static liquid environment. The bactericidal activity of KH550-Cu2O can effectively inactivate the bacteria in contact with the surface and the free bacteria, providing excellent antibacterial ability in a dynamic liquid environment. It still exhibits good anticorrosion and antibacterial abilities after multiple mechanical abrasion cycles due to the outstanding mechanical durability. Moreover, it exhibits outstanding self-healing ability to plasma etching and oil contamination, self-cleaning ability under air and oil conditions, and chemical stability against acids and alkalis solution. All the above excellent performances promote its application in a wider range of fields.
基金The authors thank the National Natural Science Foundation of China(No.51775231)National Postdoctoral Program for Innovative Talents(BX20180123)+2 种基金China Postdoctoral Science Foundation(2018M641782)Scientific Research Project of Jilin Provincial Department of Education(JJKH20211117KJ)JLU Science and Technology Innovative Research Team(No.2017TD-04).
文摘In order to satisfy the needs of different applications and more complex intelligent devices,smart control of surface wettability will be necessary and desirable,which gradually become a hot spot and focus in the field of interface wetting.Herein,we review interfacial wetting states related to switchable wettability on superwettable materials,including several classical wetting models and liquid adhesive behaviors based on the surface of natural creatures with special wettability.This review mainly focuses on the recent developments of the smart surfaces with switchable wettability and the corresponding regulatory mechanisms under external stimuli,which is mainly governed by the transformation of surface chemical composition and geometrical structures.Among that,various external stimuli such as physical stimulation(temperature,light,electric,magnetic,mechanical stress),chemical stimulation(pH,ion,solvent)and dual or multi-triggered stimulation have been sought out to realize the regulation of surface wettability.Moreover,we also summarize the applications of smart surfaces in different fields,such as oil/water separation,programmable transportation,anti-biofouling,detection and delivery,smart soft robotic etc.Furthermore,current limitations and future perspective in the development of smart wetting surfaces are also given.This review aims to offer deep insights into the recent developments and responsive mechanisms in smart biomimetic surfaces with switchable wettability under external various stimuli,so as to provide a guidance for the design of smart surfaces and expand the scope of both fundamental research and practical applications.
基金National Natural Science Foundation of China(11504435,61975062)National Key Research and Development Program of China(2019YFB2205202)Innovation Fund of WNLO.
文摘Multimode waveguide bend is one of the key components for realizing high-density mode-division multiplexing systems on chip.However,the reported multimode waveguide bends are either large,bandwidth-limited or fabrication-complicated,which hinders their applications in future high-density multimode photonic circuits.Here we propose a compact multimode waveguide bend supporting four TE modes simply by shape-optimizing with transformation optics.The shape of the waveguide is optimized in the virtual space with gradient distribution of the refractive index,so that the scattering loss and intermode cross talk are well suppressed.After conformal mapping back into the physical space,a compact(effective radius of 17μm)multimode bending waveguide is obtained.Simulations show that the proposed multimode waveguide bend has little loss(<0.1 dB)and low cross talk(<−20 dB)throughout an ultrabroad wavelength range of 1.16–1.66μm.We also fabricated the shape-optimized multimode bending waveguide on a silicon-on-insulator wafer.At 1550 nm wavelength,the measured excess losses for the four lowest-order TE modes are less than 0.6 dB,and the intermode cross talks are all below−17 dB.Our study paves the way for realizing high-density and large-scale multimode integrated optical circuits for optical interconnect.
基金This work was supported by the Singapore Ministry of Education(MOE)Tier 3 grant(MOE2017-T3-1-001),NRF grant(MOH-000926),A*STAR research grant(SERC-A18A5b0056)PUB Singapore's National Water Agency grant(PUB-1804-0082).
文摘Recent years have witnessed significant progress in quantum communication and quantum internet with the emerging quantum photonic chips,whose characteristics of scalability,stability,and low cost,flourish and open up new possibilities in miniaturized footprints.Here,we provide an overview of the advances in quantum photonic chips for quantum communication,beginning with a summary of the prevalent photonic integrated fabrication platforms and key components for integrated quantum communication systems.We then discuss a range of quantum communication applications,such as quantum key distribution and quantum teleportation.Finally,the review culminates with a perspective on challenges towards high-performance chip-based quantum communication,as well as a glimpse into future opportunities for integrated quantum networks.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11775110, and 11690034)the European Union’s Horizon 2020 Research and Innovation (RISE) Programme (Grant No. 644121)the Priority Academic Program Development for Jiangsu Higher Education Institutions (PAPD)
文摘A bounce universe model with a scale-invariant and stable spectrum of primordial density perturbations was constructed using a consistent truncation of the D-brane dynamics from Type IIB string theory. A coupling was introduced between the tachyon field and the adjoint Higgs field on the D3-branes to lock the tachyon at the top of its potential hill and to model the bounce process,which is known as the Coupled Scalar and Tachyon Bounce(CSTB) Universe. The CSTB model has been shown to be ghost free,and it fulfils the null energy condition; in addition, it can also solve the Big Bang cosmic singularity problem. In this paper we conduct an extensive follow-up study of the parameter space of the CSTB model. In particular we are interested in the parameter values that can produce a single bounce to arrive at a radiation-dominated universe. We further establish that the CSTB universe is a viable alternative to inflation, as it can naturally produce a sufficient number of e-foldings in the locked inflation epoch and in the post-bounce expansion to overcome the four fundamental limitations of the Big Bang cosmology, which are flatness, horizon,homogeneity and singularity, resulting in a universe of the current size.
文摘Gold nanoparticles (Au NPs) have been widely utilized in biomedical appli- cations owing to their attractive features and biocompatibility, which greatly increase the risk of humans" being exposed to Au NPs, including pregnant women. In contrast to mature cells, embryos are more susceptible to outside disruptive stimuli. Nonetheless, a possible inhibitory effect of nanomaterials on embryonic development is usually ignored as long as the NPs do not have significant cytotoxic effects. According to our results, a minimal "nontoxic" concentration of Au NPs during early pregnancy can have lethal inhibitory effects on embryos in vivo and in vitro. We conducted important experiments on the influence of Au NPs on embryonic development and found that Au NPs can disturb embryonic development in a size- and concentration-dependent manner. Au NPs of 15 nm in diameter downregulated the expression pattern of distinct germ layer markers both at mRNA and protein levels; this action prevented differentiation of all three embryonic germ layers. Consequentl~ fetal resorption was observed. Our work reveals the impact of Au NPs on embryonic development and will provide an important guidance and serve as a reference for biomedical applications of Au NPs with minimal side effects.
基金Defense Industrial Technology Development Program,Grant/Award Number:JCKY2019110D024JLU Science and Technology Innovative Research Team,Grant/Award Number:2020TD-03Scientific Research Project of Jilin Provincial Department of Education,Grant/Award Number:JJKH20211117KJ。
文摘A fluorine-free and multifunctional superhydrophobic coating(r-MSC)was prepared by the one-step spraying method.The coating had superhydrophobic and low-adhesion properties with the water contact angle of 161.5°�1°and the sliding angle of 3.2°�0.5°.It could be prepared by spraying while maintaining superhydrophobic surface characteristics on any substrates.The coating owed outstanding mechanical durability and chemical stability.Moreover,the coating also possessed the ability of self-cleaning,anti-fouling,anti-icing,and flame retardant ability.Importantly,the presence of multifunc-tional coating endowed the substrate with both water-resistant and fireproof properties.Besides,it also showed excellent oil-water separation ability,which presented the oil-water separation efficiency of over 90%for different types of oils after 10 separation cycles.Furthermore,the coating could improve corrosion inhibition performance and the corrosion current density was reduced by two orders of magnitude from the polarization curve.The r-MSC had the advantages of simple preparation,fluorine-free,environ-mentally friendly and appropriate for large-area fabrication,which could be applied to various fields.