The fluidity and filling ability of glass-forming Zr-based alloy melt in copper mould were investigated both theoretically and experimentally. The major factors which affected the flowing behavior of the metallic melt...The fluidity and filling ability of glass-forming Zr-based alloy melt in copper mould were investigated both theoretically and experimentally. The major factors which affected the flowing behavior of the metallic melt in the mold were determined,which provides the foundation for overcoming the contradiction between the filling and formation of amorphous alloy during the rapid cooling process of the metallic melts. The casting factors to prepare a metallic ring were discussed and selected. As a result,a Zr-based bulk metallic glass ring was prepared successfully.展开更多
Deformation of the bulk metallic glasses (BMGs) and the creation and propagation of the shear bands are closely interconnected.Shearing force was loaded on Zr 41.2 Ti 13.8 Cu 12.5 Ni 10.0 Be 22.5 (Vit.1) BMGs by cutti...Deformation of the bulk metallic glasses (BMGs) and the creation and propagation of the shear bands are closely interconnected.Shearing force was loaded on Zr 41.2 Ti 13.8 Cu 12.5 Ni 10.0 Be 22.5 (Vit.1) BMGs by cutting during the turning of the BMG rod.The temperature rise of alloy on the shear bands was calculated and the result showed that it could reach the temperature of the super-cooled liquid zone or exceed the melting point.The temperature rise caused viscous fluid flow and brought about the deformation of BMGs.This suggested that the deformation of BMGs was derived,at least to some extent,from the adiabatic shear temperature rise.展开更多
基金the National Natural Science Foundation of China (Grant No. 50731005)SKPBRC (Grant No. 2006CB605201/2007CB616915)+3 种基金PCSIRT (Grant No. IRT0650)the Natural Science Foundation of Hebei Province of China (Grant No. E2004000209)the Scientific Research Foundation of Education Department of Hebei Province of China (Grant No. 2004464)the Experts and Scholars Fund of Personnel Department of Hebei Province,China (Grant No. 2003)
文摘The fluidity and filling ability of glass-forming Zr-based alloy melt in copper mould were investigated both theoretically and experimentally. The major factors which affected the flowing behavior of the metallic melt in the mold were determined,which provides the foundation for overcoming the contradiction between the filling and formation of amorphous alloy during the rapid cooling process of the metallic melts. The casting factors to prepare a metallic ring were discussed and selected. As a result,a Zr-based bulk metallic glass ring was prepared successfully.
基金supported by the National Basic Research Program of China (Grant No. 2010CB731600)the National Natural Science Foundation of China (Grant Nos. 50731005,50821001 and 51171163)+1 种基金the Doctoral Fund of Ministry of Education of China (Grant No. 20101333110004)the Nature Science Foundation of Hebei (Grant No. E2010001176)
文摘Deformation of the bulk metallic glasses (BMGs) and the creation and propagation of the shear bands are closely interconnected.Shearing force was loaded on Zr 41.2 Ti 13.8 Cu 12.5 Ni 10.0 Be 22.5 (Vit.1) BMGs by cutting during the turning of the BMG rod.The temperature rise of alloy on the shear bands was calculated and the result showed that it could reach the temperature of the super-cooled liquid zone or exceed the melting point.The temperature rise caused viscous fluid flow and brought about the deformation of BMGs.This suggested that the deformation of BMGs was derived,at least to some extent,from the adiabatic shear temperature rise.