The fundamental thermodynamic functions of enthalpy, entropy, and Gibbs free energy, as functions of the excess free volume at interfaces, temperature, and grain size, have been derived for single-phase metal nanocrys...The fundamental thermodynamic functions of enthalpy, entropy, and Gibbs free energy, as functions of the excess free volume at interfaces, temperature, and grain size, have been derived for single-phase metal nanocrystals. The model was applied to predict the thermal features of nano-grain boundaries and the characteristics of phase transformation in nanocrystalline metals, such as the transformation temperature and the critical grain size for phase transformation at a given temperature. The model predictions have been verified by experimental studies on the β-Co ←→α-Co phase transformation in nanocrystalline Co prepared by ball milling.展开更多
基金The work was financially supported by the National Natural Science Foundation of China (No. 50401001) and the Pro-gram of Beijing New Star of Science and Technology (No. 2004B04).
文摘The fundamental thermodynamic functions of enthalpy, entropy, and Gibbs free energy, as functions of the excess free volume at interfaces, temperature, and grain size, have been derived for single-phase metal nanocrystals. The model was applied to predict the thermal features of nano-grain boundaries and the characteristics of phase transformation in nanocrystalline metals, such as the transformation temperature and the critical grain size for phase transformation at a given temperature. The model predictions have been verified by experimental studies on the β-Co ←→α-Co phase transformation in nanocrystalline Co prepared by ball milling.