作物生殖生长期长度与作物产量和品质密切相关。为深入探究作物生殖生长期长度(reproductive growth period lengths,RGLs)对气候变化和技术进步的响应,基于1981—2010年长江中下游地区单季稻生殖生长期和气象数据,量化不同RGLs (孕穗...作物生殖生长期长度与作物产量和品质密切相关。为深入探究作物生殖生长期长度(reproductive growth period lengths,RGLs)对气候变化和技术进步的响应,基于1981—2010年长江中下游地区单季稻生殖生长期和气象数据,量化不同RGLs (孕穗期—抽穗期(booting to heading,BDHD)、抽穗期—乳熟期(heading to milking,HDMS)、乳熟期—成熟期(milking to maturity,MSMD)和孕穗期—成熟期(booting to maturity,BDMD))对平均温度(mean temperature,TEM)、累积降水量(cumulative precipitation,PRE)和累积日照时数(cumulative sunshine duration,SSD)的敏感性,并分离气候变化和技术进步对不同RGLs的影响。结果表明,1981—2010年长江中下游地区单季稻BDMD呈延长趋势(0.24d a^(–1)),其中,HDMS延长趋势最明显(0.16 d a^(–1))。气候因子中高温和寡照不利于单季稻不同RGLs延长,其中,TEM对BDHD、HDMS和MSMD变化趋势的平均相对贡献分别为–50.0%、–50.7%和–21.9%,SSD对BDHD、HDMS和MSMD变化趋势的平均相对贡献分别为–47.2%、–48.7%和–67.6%。技术进步弥补了气候变化对不同RGLs变化趋势的不利影响。研究表明,技术进步可能是当前单季稻稳产高产和趋利避害的主要手段,未来可以采用较长生殖生长期和耐热性品种来适应持续的气候变化。展开更多
By assuming constant winter wheat varieties and agricultural practices in China, the influence of climate change on winter wheat is simulated using the corrected future climate projections under SRES A2 and A1B scenar...By assuming constant winter wheat varieties and agricultural practices in China, the influence of climate change on winter wheat is simulated using the corrected future climate projections under SRES A2 and A1B scenarios from 2012 to 2100, respectively. The results indicate that the growth of winter wheat would be strongly influenced by climate change in future. The average flowering and maturity dates of winter wheat would advance by 26 and 27 days under scenario A2, and by 23 and 24 days respectively under scenario A1B from 2012 to 2100. The simulated potential productivity of winter wheat shows a decrease of 14.3% and 12.5% for scenarios A2 and A1B respectively without the fertilization effect of CO2, while an increase of 1.3% and 0.6% with the fertilization effect of CO2. Additionally, for northern China, the simulated potential productivity would markedly decrease under both scenarios, independent with the fertilization effect of CO2, which indicates that the current planted winter wheat would be more vulnerable than that in southern China. The most likely reason is the current winter wheat varieties in northern China are winter varieties or strong winter varieties, which need some days of low temperature for dormancy. While in southern China, the winter wheat is spring or half winter varieties and can grow slowly during winter, thus, they would be affected slightly when winter temperature increases. The results of this study may have important implications for adaptation measures.展开更多
The substituted phenanthrene-9-carboxyaldehydes are very important intermediates for the syntheses of phenanthroindolizidine and phenanthroquinolizidine alkaloids. The novel title compound was prepared from the reacti...The substituted phenanthrene-9-carboxyaldehydes are very important intermediates for the syntheses of phenanthroindolizidine and phenanthroquinolizidine alkaloids. The novel title compound was prepared from the reaction of 5 steps starting from the condensation of 3-methoxyl-4-methyl-phenylacetic acid and 4-(benzyloxy)-2-iodobenzaldehyde, followed by esterification, cyclization, reduction, and oxidation. A new method for the preparation of phenanthrene ring via palladium-catalyzed intramolecular Heck reaction was described. The title compound was characterized by IR, ^1H NMR, ^13C NMR, elemental analysis, and MS.展开更多
文摘作物生殖生长期长度与作物产量和品质密切相关。为深入探究作物生殖生长期长度(reproductive growth period lengths,RGLs)对气候变化和技术进步的响应,基于1981—2010年长江中下游地区单季稻生殖生长期和气象数据,量化不同RGLs (孕穗期—抽穗期(booting to heading,BDHD)、抽穗期—乳熟期(heading to milking,HDMS)、乳熟期—成熟期(milking to maturity,MSMD)和孕穗期—成熟期(booting to maturity,BDMD))对平均温度(mean temperature,TEM)、累积降水量(cumulative precipitation,PRE)和累积日照时数(cumulative sunshine duration,SSD)的敏感性,并分离气候变化和技术进步对不同RGLs的影响。结果表明,1981—2010年长江中下游地区单季稻BDMD呈延长趋势(0.24d a^(–1)),其中,HDMS延长趋势最明显(0.16 d a^(–1))。气候因子中高温和寡照不利于单季稻不同RGLs延长,其中,TEM对BDHD、HDMS和MSMD变化趋势的平均相对贡献分别为–50.0%、–50.7%和–21.9%,SSD对BDHD、HDMS和MSMD变化趋势的平均相对贡献分别为–47.2%、–48.7%和–67.6%。技术进步弥补了气候变化对不同RGLs变化趋势的不利影响。研究表明,技术进步可能是当前单季稻稳产高产和趋利避害的主要手段,未来可以采用较长生殖生长期和耐热性品种来适应持续的气候变化。
基金supported by the impact of agrometeorology disasters on agriculture under climate change in China(No.GYHY201106021)National Basic Research Program of China(No.2012CB955301)
文摘By assuming constant winter wheat varieties and agricultural practices in China, the influence of climate change on winter wheat is simulated using the corrected future climate projections under SRES A2 and A1B scenarios from 2012 to 2100, respectively. The results indicate that the growth of winter wheat would be strongly influenced by climate change in future. The average flowering and maturity dates of winter wheat would advance by 26 and 27 days under scenario A2, and by 23 and 24 days respectively under scenario A1B from 2012 to 2100. The simulated potential productivity of winter wheat shows a decrease of 14.3% and 12.5% for scenarios A2 and A1B respectively without the fertilization effect of CO2, while an increase of 1.3% and 0.6% with the fertilization effect of CO2. Additionally, for northern China, the simulated potential productivity would markedly decrease under both scenarios, independent with the fertilization effect of CO2, which indicates that the current planted winter wheat would be more vulnerable than that in southern China. The most likely reason is the current winter wheat varieties in northern China are winter varieties or strong winter varieties, which need some days of low temperature for dormancy. While in southern China, the winter wheat is spring or half winter varieties and can grow slowly during winter, thus, they would be affected slightly when winter temperature increases. The results of this study may have important implications for adaptation measures.
文摘The substituted phenanthrene-9-carboxyaldehydes are very important intermediates for the syntheses of phenanthroindolizidine and phenanthroquinolizidine alkaloids. The novel title compound was prepared from the reaction of 5 steps starting from the condensation of 3-methoxyl-4-methyl-phenylacetic acid and 4-(benzyloxy)-2-iodobenzaldehyde, followed by esterification, cyclization, reduction, and oxidation. A new method for the preparation of phenanthrene ring via palladium-catalyzed intramolecular Heck reaction was described. The title compound was characterized by IR, ^1H NMR, ^13C NMR, elemental analysis, and MS.