The research purpose was to improve the accuracy in identifying the prosthetic leg locomotion mode.Surface electromyography(sEMG)combined with high-order zero-crossing was used to identify the prosthetic leg locomotio...The research purpose was to improve the accuracy in identifying the prosthetic leg locomotion mode.Surface electromyography(sEMG)combined with high-order zero-crossing was used to identify the prosthetic leg locomotion modes.sEMG signals recorded from residual thigh muscles were chosen as inputs to pattern classifier for locomotion-mode identification.High-order zero-crossing were computed as the sEMG features regarding locomotion modes.Relevance vector machine(RVM)classifier was investigated.Bat algorithm(BA)was used to compute the RVM classifier kernel function parameters.The classification performance of the particle swarm optimization-relevance vector machine(PSO-RVM)and RVM classifiers was compared.The BA-RVM produced lower classification error in sEMG pattern recognition for the transtibial amputees over a variety of locomotion modes:upslope,downgrade,level-ground walking and stair ascent/descent.展开更多
基金the Center Plain Science and Technology Innovation Talents(No.194200510016)the Science and Technology Innovation Team Project of Henan Province University(No.19IRTSTHN013)the Key Scien-tific Research Support Project for Institutions of Higher Learning in Henan Province(No.18A413014)。
文摘The research purpose was to improve the accuracy in identifying the prosthetic leg locomotion mode.Surface electromyography(sEMG)combined with high-order zero-crossing was used to identify the prosthetic leg locomotion modes.sEMG signals recorded from residual thigh muscles were chosen as inputs to pattern classifier for locomotion-mode identification.High-order zero-crossing were computed as the sEMG features regarding locomotion modes.Relevance vector machine(RVM)classifier was investigated.Bat algorithm(BA)was used to compute the RVM classifier kernel function parameters.The classification performance of the particle swarm optimization-relevance vector machine(PSO-RVM)and RVM classifiers was compared.The BA-RVM produced lower classification error in sEMG pattern recognition for the transtibial amputees over a variety of locomotion modes:upslope,downgrade,level-ground walking and stair ascent/descent.