本研究基于荧光共振能量转移(Fluorescence Resonance Energy Transfer,FRET)原理,以荧光素(Fluorescein,FAM)标记的核酸适配体(Aptamer)及猝灭基团(Dabycl)标记的互补链(cDNA)为主体,构建了赭曲霉毒素A(Ochratoxin A,OTA)的荧光标记检...本研究基于荧光共振能量转移(Fluorescence Resonance Energy Transfer,FRET)原理,以荧光素(Fluorescein,FAM)标记的核酸适配体(Aptamer)及猝灭基团(Dabycl)标记的互补链(cDNA)为主体,构建了赭曲霉毒素A(Ochratoxin A,OTA)的荧光标记检测方法。该方法对OTA的检测限为0.01μg/mL,OTA浓度在0.01~0.25μg/mL范围内与荧光强度线性关系良好(R^(2)=0.9991),回收率在86.40%~97.50%之间,可用于实际样品的检测。与传统检测方法酶联免疫吸附剂分析相比,本方法具有检测快速、灵敏度高、特异性强等优点,为食品中对人体有害物质的检测提供了一种新思路。展开更多
Achieving high performances of high thermal conductivity and low thermal expansion remains a great challenge. In this study,we have designed and synthesized the ScF_(3)@Cu core-shell composites through a general elect...Achieving high performances of high thermal conductivity and low thermal expansion remains a great challenge. In this study,we have designed and synthesized the ScF_(3)@Cu core-shell composites through a general electroless plating method to coat Cu on the surface of negative thermal expansion particles of ScF_(3). A spatially continuous copper network structure is formed in the present core-shell structure composites to achieve high thermal conductivity and low thermal expansion simultaneously, which is different from the conventional mixed composites. Notably, a high thermal conductivity(136.3 W m^(-1) K^(-1)) has been achieved in the ScF_(3)@Cu-40 core-shell composite with a low thermal expansion property(4.3×10^(-6) K^(-1)). The mechanism of thermal property and microstructure of the present core-shell composites are systematically studied based on different models. Our proposed approach in this study can be widely applicable to numerous advanced materials, which should simultaneously control thermal conductivity and thermal expansion properties.展开更多
文摘本研究基于荧光共振能量转移(Fluorescence Resonance Energy Transfer,FRET)原理,以荧光素(Fluorescein,FAM)标记的核酸适配体(Aptamer)及猝灭基团(Dabycl)标记的互补链(cDNA)为主体,构建了赭曲霉毒素A(Ochratoxin A,OTA)的荧光标记检测方法。该方法对OTA的检测限为0.01μg/mL,OTA浓度在0.01~0.25μg/mL范围内与荧光强度线性关系良好(R^(2)=0.9991),回收率在86.40%~97.50%之间,可用于实际样品的检测。与传统检测方法酶联免疫吸附剂分析相比,本方法具有检测快速、灵敏度高、特异性强等优点,为食品中对人体有害物质的检测提供了一种新思路。
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.21825102,12004032 and 22001014)the Fundamental Research Funds for the Central Universities,China(Grant Nos.FRF-TP-18-001C2 and FRF-MP-20-40)。
文摘Achieving high performances of high thermal conductivity and low thermal expansion remains a great challenge. In this study,we have designed and synthesized the ScF_(3)@Cu core-shell composites through a general electroless plating method to coat Cu on the surface of negative thermal expansion particles of ScF_(3). A spatially continuous copper network structure is formed in the present core-shell structure composites to achieve high thermal conductivity and low thermal expansion simultaneously, which is different from the conventional mixed composites. Notably, a high thermal conductivity(136.3 W m^(-1) K^(-1)) has been achieved in the ScF_(3)@Cu-40 core-shell composite with a low thermal expansion property(4.3×10^(-6) K^(-1)). The mechanism of thermal property and microstructure of the present core-shell composites are systematically studied based on different models. Our proposed approach in this study can be widely applicable to numerous advanced materials, which should simultaneously control thermal conductivity and thermal expansion properties.