El Nino-Southern Oscillation(ENSO) is the strongest interannual signal that is producedby basinscale processes in the tropical Pacific,with significant effects on weather and climate worldwide.In the past,extensive an...El Nino-Southern Oscillation(ENSO) is the strongest interannual signal that is producedby basinscale processes in the tropical Pacific,with significant effects on weather and climate worldwide.In the past,extensive and intensive international efforts have been devoted to coupled model developments for ENSO studies.A hierarchy of coupled ocean-atmo sphere models has been formulated;in terms of their complexity,they can be categorized into intermediate coupled models(ICMs),hybrid coupled models(HCMs),and fully coupled general circulation models(CGCMs).ENSO modeling has made significant progress over the past decades,reaching a stage where coupled models can now be used to successfully predict ENSO events 6 months to one year in advance.Meanwhile,ENSO exhibits great diversity and complexity as observed in nature,which still cannot be adequately captured by current state-of-the-art coupled models,presenting a challenge to ENSO modeling.We primarily reviewed the long-term efforts in ENSO modeling continually and steadily made at different institutions in China;some selected representative examples are presented here to review the current status of ENSO model developments and applications,which have been actively pursued with noticeable progress being made recently.As ENSO simulations are very sensitive to model formulations and process representations etc.,dedicated efforts have been devoted to ENSO model developments and improvements.Now,different ocean-atmosphere coupled models have been available in China,which exhibit good model performances and have already had a variety of applications to climate modeling,including the Coupled Model Intercomparison Project Phase 6(CMIP6).Nevertheless,large biases and uncertainties still exist in ENSO simulations and predictions,and there are clear rooms for their improvements,which are still an active area of researches and applications.Here,model performances of ENSO simulations are assessed in terms of advantages and disadvantages with these differently formulated coupled models,pinpointing to the areas where they need to be further improved for ENSO studies.These analyses provide valuable guidance for future improvements in ENSO simulations and predictions.展开更多
Recently atmospheric and oceanic observations indicate the tropical Pacific is at the El Ni?o condition. However,it's not clear whether this El Ni?o event of this year is comparable to the very strong one of 1997/9...Recently atmospheric and oceanic observations indicate the tropical Pacific is at the El Ni?o condition. However,it's not clear whether this El Ni?o event of this year is comparable to the very strong one of 1997/98 which brought huge influence on the whole world. In this study, based on the Ensemble Adjusted Kalman Filter(EAKF)assimilation scheme and First Institute of Oceanography-Earth System Model(FIO-ESM), the assimilation system is setup, which can provide reasonable initial conditions for prediction. And the hindcast results suggest the skill of El Ni?o-Southern Oscillation(ENSO) prediction is comparable to other dynamical coupled models. Then the prediction for 2015/16 El Ni?o by using FIO-ESM is started from 1 November 2015. The ensemble results indicate that the 2015/16 El Ni?o will continue to be strong. By the end of 2015, the strongest strength is very like more than 2.0°C and the ensemble mean strength is 2.34°C, which indicates 2015/16 El Ni?o event will be very strong but slightly less than that of 1997/98 El Ni?o event(2.40°C) calculated relative a climatology based on the years1992–2014. The prediction results also suggest 2015/16 El Ni?o event will be a transition to ENSO-neutral level in the early spring(FMA) 2016, and then may transfer to La Ni?a in summer 2016.展开更多
A global ocean carbon cycle model based on the ocean general circulation model POP and the improved biogeochemical model OCMIP-2 is employed to simulate carbon cycle processes under the historically observed atmospher...A global ocean carbon cycle model based on the ocean general circulation model POP and the improved biogeochemical model OCMIP-2 is employed to simulate carbon cycle processes under the historically observed atmospheric CO 2 concentration and different future scenarios (called Rep- resentative Concentration Pathways, or RCPs). The RCPs in this paper follow the design of Inter- governmental Panel on Climate Change (IPCC) for the Fifth Assessment Report (AR5). The model results show that the ocean absorbs CO 2 from atmosphere and the absorbability will continue in the 21st century under the four RCPs. The net air-sea CO 2 flux increased during the historical time and reached 1.87 Pg/a (calculated by carbon) in 2005; however, it would reach peak and then decrease in the 21st century. The ocean absorbs CO 2 mainly in the mid latitude, and releases CO 2 in the equator area. However, in the Antarctic Circumpolar Current (ACC) area the ocean would change from source to sink under the rising CO 2 concentration, including RCP4.5, RCP6.0, and RCP8.5. In 2100, the anthropogenic carbon would be transported to the 40 S in the Atlantic Ocean by the North Atlantic Deep Water (NADW), and also be transported to the north by the Antarctic Bottom Water (AABW) along the Antarctic continent in the Atlantic and Pacific oceans. The ocean pH value is also simulated by the model. The pH decreased by 0.1 after the industrial revolution, and would continue to decrease in the 21st century. For the highest concentration sce- nario of RCP8.5, the global averaged pH would decrease by 0.43 to reach 7.73 due to the absorption of CO 2 from atmosphere.展开更多
A global eddy-permitting ocean-ice coupled model with a horizontal resolution of 0.25° by 0.25° is estab- lished on the basis of Modular Ocean Model version 4 (MOM4) and Sea Ice Simulator (SIS). Simulati...A global eddy-permitting ocean-ice coupled model with a horizontal resolution of 0.25° by 0.25° is estab- lished on the basis of Modular Ocean Model version 4 (MOM4) and Sea Ice Simulator (SIS). Simulation results are compared with those of an intermediate resolution ocean-ice coupled model with a horizontal resolution of about 1° by 1°. The results show that the simulated ocean temperature, ocean current and sea ice concentration from the eddy-permitting model are better than those from the intermediate resolu- tion model. However, both the two models have the common problem of ocean general circulation models (OGCMs) that the majority of the simulated summer sea surface temperature (SST) is too warm while the majority of the simulated subsurface summer temperature is too cold. Further numerical experiments show that this problem can be alleviated by incorporating the non-breaking surface wave-induced vertical mixing into the vertical mixing scheme for both eddy-permitting and intermediate resolution models.展开更多
Compared with observations,the simulated upper ocean heat content(OHC)determined from climate models shows an underestimation bias.The simulation bias of the average annual water temperature in the upper 300 m is 0.2...Compared with observations,the simulated upper ocean heat content(OHC)determined from climate models shows an underestimation bias.The simulation bias of the average annual water temperature in the upper 300 m is 0.2℃lower than the observational results.The results from our two numerical experiments,using a CMIP5 model,show that the non-breaking surface wave-induced vertical mixing can reduce this bias.The enhanced vertical mixing increases the OHC in the global upper ocean(65°S–65°N).Using non-breaking surface wave-induced vertical mixing reduced the disparity by 30%to 0.14℃.The heat content increase is not directly induced by air-sea heat fluxes during the simulation period,but is the legacy of temperature increases in the first 150 years.During this period,additional vertical mixing was initially included in the climate model.The non-breaking surface wave-induced vertical mixing improves the OHC by increasing the air-sea heat fluxes in the first 150 years.This increase in air-sea heat fluxes warms the upper ocean by 0.05–0.06℃.The results show that the incorporation of vertical mixing induced by nonbreaking surface waves in our experiments can improve the simulation of OHC in the global upper ocean.展开更多
An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first cent...An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first century according to Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled models. The present study found that water flux from rivers to the Arctic Ocean at the end of the century will be 1.4 times that in 1950 according to CMIP5 projection results under Representative Concentration Pathway 8.5. The effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation (AMOC) was investigated using an ocean-ice coupled model. Results obtained from two numerical experiments show that 100, 150 and 200 years after the start of an increase in the Arctic river runoff at a rate of 0.22%/a, the AMOC will weaken by 0.6 (3%), 1.2 (7%) and 1.8 (11%) Sv. AMOC weakening is mainly caused by freshwater transported from increasing Arctic river runoff inhibiting the formation of North Atlantic Deep Water (NADW). As the AMOC weakens, the deep seawater age will become older throughout the Atlantic Basin owing to the increasing of Arctic runoff.展开更多
基金the National Key Research and Development Program of China (Nos.2017YFC1404102,2017YFC1404100)the Strategic Priority Research Program of Chinese Academy of Sciences (Nos.XDB 40000000,XDB 42000000)+4 种基金the National Natural Science Foundation of China (Nos.41690122(41690120),41705082,41421005)the Shandong Taishan Scholarship,the China Postdoctoral Science Foundation (Nos.2018M640659,2019M662453)YU Yongqiang is jointly supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Nos.XDA 19060102.XDB 42000000)REN Hong-Li is jointly supported by the China National Science Foundation (No.41975094)the China National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disaster (No.2018YFC1506004)
文摘El Nino-Southern Oscillation(ENSO) is the strongest interannual signal that is producedby basinscale processes in the tropical Pacific,with significant effects on weather and climate worldwide.In the past,extensive and intensive international efforts have been devoted to coupled model developments for ENSO studies.A hierarchy of coupled ocean-atmo sphere models has been formulated;in terms of their complexity,they can be categorized into intermediate coupled models(ICMs),hybrid coupled models(HCMs),and fully coupled general circulation models(CGCMs).ENSO modeling has made significant progress over the past decades,reaching a stage where coupled models can now be used to successfully predict ENSO events 6 months to one year in advance.Meanwhile,ENSO exhibits great diversity and complexity as observed in nature,which still cannot be adequately captured by current state-of-the-art coupled models,presenting a challenge to ENSO modeling.We primarily reviewed the long-term efforts in ENSO modeling continually and steadily made at different institutions in China;some selected representative examples are presented here to review the current status of ENSO model developments and applications,which have been actively pursued with noticeable progress being made recently.As ENSO simulations are very sensitive to model formulations and process representations etc.,dedicated efforts have been devoted to ENSO model developments and improvements.Now,different ocean-atmosphere coupled models have been available in China,which exhibit good model performances and have already had a variety of applications to climate modeling,including the Coupled Model Intercomparison Project Phase 6(CMIP6).Nevertheless,large biases and uncertainties still exist in ENSO simulations and predictions,and there are clear rooms for their improvements,which are still an active area of researches and applications.Here,model performances of ENSO simulations are assessed in terms of advantages and disadvantages with these differently formulated coupled models,pinpointing to the areas where they need to be further improved for ENSO studies.These analyses provide valuable guidance for future improvements in ENSO simulations and predictions.
基金The National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404the Public Science and Technology Research Funds Projects of Ocean under contract Nos 201105019 and 201505013
文摘Recently atmospheric and oceanic observations indicate the tropical Pacific is at the El Ni?o condition. However,it's not clear whether this El Ni?o event of this year is comparable to the very strong one of 1997/98 which brought huge influence on the whole world. In this study, based on the Ensemble Adjusted Kalman Filter(EAKF)assimilation scheme and First Institute of Oceanography-Earth System Model(FIO-ESM), the assimilation system is setup, which can provide reasonable initial conditions for prediction. And the hindcast results suggest the skill of El Ni?o-Southern Oscillation(ENSO) prediction is comparable to other dynamical coupled models. Then the prediction for 2015/16 El Ni?o by using FIO-ESM is started from 1 November 2015. The ensemble results indicate that the 2015/16 El Ni?o will continue to be strong. By the end of 2015, the strongest strength is very like more than 2.0°C and the ensemble mean strength is 2.34°C, which indicates 2015/16 El Ni?o event will be very strong but slightly less than that of 1997/98 El Ni?o event(2.40°C) calculated relative a climatology based on the years1992–2014. The prediction results also suggest 2015/16 El Ni?o event will be a transition to ENSO-neutral level in the early spring(FMA) 2016, and then may transfer to La Ni?a in summer 2016.
基金The 973 Project under contract Nos 2010CB950300 and 2010CB950500the Key Project of the National Natural Science Foundation of China under contract No. 40730842+1 种基金the Public Science and Technology Research Funds projects of ocean under contract No. 201105019the International Cooperation Project of Ministry of Science and Technology of China under contract No. S2011GR0348
文摘A global ocean carbon cycle model based on the ocean general circulation model POP and the improved biogeochemical model OCMIP-2 is employed to simulate carbon cycle processes under the historically observed atmospheric CO 2 concentration and different future scenarios (called Rep- resentative Concentration Pathways, or RCPs). The RCPs in this paper follow the design of Inter- governmental Panel on Climate Change (IPCC) for the Fifth Assessment Report (AR5). The model results show that the ocean absorbs CO 2 from atmosphere and the absorbability will continue in the 21st century under the four RCPs. The net air-sea CO 2 flux increased during the historical time and reached 1.87 Pg/a (calculated by carbon) in 2005; however, it would reach peak and then decrease in the 21st century. The ocean absorbs CO 2 mainly in the mid latitude, and releases CO 2 in the equator area. However, in the Antarctic Circumpolar Current (ACC) area the ocean would change from source to sink under the rising CO 2 concentration, including RCP4.5, RCP6.0, and RCP8.5. In 2100, the anthropogenic carbon would be transported to the 40 S in the Atlantic Ocean by the North Atlantic Deep Water (NADW), and also be transported to the north by the Antarctic Bottom Water (AABW) along the Antarctic continent in the Atlantic and Pacific oceans. The ocean pH value is also simulated by the model. The pH decreased by 0.1 after the industrial revolution, and would continue to decrease in the 21st century. For the highest concentration sce- nario of RCP8.5, the global averaged pH would decrease by 0.43 to reach 7.73 due to the absorption of CO 2 from atmosphere.
基金The Key Project of the National Science Foundation of China under contract No. 40730842the "973" Project of China under contract No. 2010CB950303+2 种基金the Scientific Research Foundation of the First Institute of Oceanography, State Oceanic Administration of Chinaunder contract No. 2011T02the National Key Technology R&D Program of China under contract No. 2011BAC03B02the Key Supercomputing Science-Technology Project of Shandong Province of China under contract No. 2011YD01107
文摘A global eddy-permitting ocean-ice coupled model with a horizontal resolution of 0.25° by 0.25° is estab- lished on the basis of Modular Ocean Model version 4 (MOM4) and Sea Ice Simulator (SIS). Simulation results are compared with those of an intermediate resolution ocean-ice coupled model with a horizontal resolution of about 1° by 1°. The results show that the simulated ocean temperature, ocean current and sea ice concentration from the eddy-permitting model are better than those from the intermediate resolu- tion model. However, both the two models have the common problem of ocean general circulation models (OGCMs) that the majority of the simulated summer sea surface temperature (SST) is too warm while the majority of the simulated subsurface summer temperature is too cold. Further numerical experiments show that this problem can be alleviated by incorporating the non-breaking surface wave-induced vertical mixing into the vertical mixing scheme for both eddy-permitting and intermediate resolution models.
基金Supported by the International Cooperation Project on the China-Australia Research Centre for Maritime Engineering of Ministry of Science and Technology,China(No.2016YFE0101400)the Basic Scientific Fund for National Public Research Institutes of China(No.2018S03)+4 种基金the National Natural Science Foundation of China(Nos.41821004,41776038)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1606405)the International Cooperation Project of Indo-Pacific Ocean Environment Variation and Air-Sea Interaction(No.GASI-IPOVAI-05)the IOC/WESTPAC OFS Project,the Ao Shan Talents Cultivation Excellent Scholar Program Supported by Qingdao National Laboratory for Marine Science and Technology(No.2017ASTCP-ES04)the China-Korea Cooperation Project on the Prediction of North-West Pacific Climate Change
文摘Compared with observations,the simulated upper ocean heat content(OHC)determined from climate models shows an underestimation bias.The simulation bias of the average annual water temperature in the upper 300 m is 0.2℃lower than the observational results.The results from our two numerical experiments,using a CMIP5 model,show that the non-breaking surface wave-induced vertical mixing can reduce this bias.The enhanced vertical mixing increases the OHC in the global upper ocean(65°S–65°N).Using non-breaking surface wave-induced vertical mixing reduced the disparity by 30%to 0.14℃.The heat content increase is not directly induced by air-sea heat fluxes during the simulation period,but is the legacy of temperature increases in the first 150 years.During this period,additional vertical mixing was initially included in the climate model.The non-breaking surface wave-induced vertical mixing improves the OHC by increasing the air-sea heat fluxes in the first 150 years.This increase in air-sea heat fluxes warms the upper ocean by 0.05–0.06℃.The results show that the incorporation of vertical mixing induced by nonbreaking surface waves in our experiments can improve the simulation of OHC in the global upper ocean.
基金The Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes under contract No.CHINARE2016-04-04the National Natural Science Foundation of China under contract No.41406027+1 种基金the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404the Basic Research Operating Funds of The First Institute of Oceanography,State Oceanic Administration of China under contract Nos 2015P03 and 2015P01
文摘An increasing amount of freshwater has been observed to enter the Arctic Ocean from the six largest Eurasian rivers over the past several decades. The increasing trend is projected to continue in the twenty-first century according to Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled models. The present study found that water flux from rivers to the Arctic Ocean at the end of the century will be 1.4 times that in 1950 according to CMIP5 projection results under Representative Concentration Pathway 8.5. The effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation (AMOC) was investigated using an ocean-ice coupled model. Results obtained from two numerical experiments show that 100, 150 and 200 years after the start of an increase in the Arctic river runoff at a rate of 0.22%/a, the AMOC will weaken by 0.6 (3%), 1.2 (7%) and 1.8 (11%) Sv. AMOC weakening is mainly caused by freshwater transported from increasing Arctic river runoff inhibiting the formation of North Atlantic Deep Water (NADW). As the AMOC weakens, the deep seawater age will become older throughout the Atlantic Basin owing to the increasing of Arctic runoff.