In this paper, CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites were prepared by direct feeding microwave synthesis method with nine water iron nitrate (Fe(NO<sub>3</sub>)3&bull...In this paper, CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites were prepared by direct feeding microwave synthesis method with nine water iron nitrate (Fe(NO<sub>3</sub>)3•9H<sub>2</sub>O), cerium nitrate hexahydrate (Ce(NO<sub>3</sub>)3•6H<sub>2</sub>O) and ammonium metavanadate (NH<sub>4</sub>VO<sub>3</sub>) as raw material and Sodium Dodecyl Sulfate (SDS) as surfactant. Then X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM) were used to observe the CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites. SEM image showed that the as-prepared CeVO<sub>4</sub>/ FeVO<sub>4</sub> nanocomposites calcined at 773 Kis formated of small particles aggregation irregular sheet structure. We studied the photocatalytic activity of the as-prepared samples by using degradation of methyl orange in visible light. The results showed that the photocatalytic activity of CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites were very well. It found that when the catalyst calcined at 773 K was 0.10 g, and 0.5 mL hydrogen peroxide joined as well as, pH was 2.0, the degradation ratio of catalyst for methylene orange of 100 mL 5 mg/L reached 98.63% in 40 min.展开更多
Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record supercondu...Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record superconducting critical temperature(T_(c))in element scandium(S_(c))has further ignited the intensive attention on transition metals.The element molybdenum(M_o)with a half-full d-orbital is studied in our work,which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity.In this work,we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements,the T_(c) varies at a rate of0.013 K/GPa to 8.56 K at 160 GPa.Moreover,the superconductivity is evidenced by the T_(c) shifting to lower temperature under applied magnetic fields,and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation;the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa.We further investigate the superconducting mechanism of Mo,the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200-400 cm^(-1).展开更多
文摘In this paper, CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites were prepared by direct feeding microwave synthesis method with nine water iron nitrate (Fe(NO<sub>3</sub>)3•9H<sub>2</sub>O), cerium nitrate hexahydrate (Ce(NO<sub>3</sub>)3•6H<sub>2</sub>O) and ammonium metavanadate (NH<sub>4</sub>VO<sub>3</sub>) as raw material and Sodium Dodecyl Sulfate (SDS) as surfactant. Then X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM) were used to observe the CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites. SEM image showed that the as-prepared CeVO<sub>4</sub>/ FeVO<sub>4</sub> nanocomposites calcined at 773 Kis formated of small particles aggregation irregular sheet structure. We studied the photocatalytic activity of the as-prepared samples by using degradation of methyl orange in visible light. The results showed that the photocatalytic activity of CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites were very well. It found that when the catalyst calcined at 773 K was 0.10 g, and 0.5 mL hydrogen peroxide joined as well as, pH was 2.0, the degradation ratio of catalyst for methylene orange of 100 mL 5 mg/L reached 98.63% in 40 min.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFA1405500)the National Natural Science Foundation of China (Grant Nos.52372257 and 52072188)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT-15R23)the Zhejiang Provincial Science and Technology Innovation Team (Grant No.2021R01004)。
文摘Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record superconducting critical temperature(T_(c))in element scandium(S_(c))has further ignited the intensive attention on transition metals.The element molybdenum(M_o)with a half-full d-orbital is studied in our work,which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity.In this work,we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements,the T_(c) varies at a rate of0.013 K/GPa to 8.56 K at 160 GPa.Moreover,the superconductivity is evidenced by the T_(c) shifting to lower temperature under applied magnetic fields,and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation;the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa.We further investigate the superconducting mechanism of Mo,the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200-400 cm^(-1).