Aiming to the estimation of source numbers, mixing matrix and separation of mixing signals under underdetermined case, the article puts forward a method of underdetermined blind source separation (UBSS) with an appl...Aiming to the estimation of source numbers, mixing matrix and separation of mixing signals under underdetermined case, the article puts forward a method of underdetermined blind source separation (UBSS) with an application in ultra-wideband (UWB) communication signals. The method is based on the sparse characteristic of UWB communication signals in the time domain. Firstly, finding the single source area by calculating the ratio of observed sampling points. Then an algorithm called hough-windowed method was introduced to estimate the number of sources and mixing matrix. Finally the separation of mixing signals using a method based on amended subspace projection. The simulation results indicate that the proposed method can separate UWB communication signals successfully, estimate the mixing matrix with higher accuracy and separate the mixing signals with higher gain compared with other conventional algorithms. At the same time, the method reflects the higher stability and the better noise immunity.展开更多
基金supported by the National Natural Science Foundation of China (61172038, 60831001)
文摘Aiming to the estimation of source numbers, mixing matrix and separation of mixing signals under underdetermined case, the article puts forward a method of underdetermined blind source separation (UBSS) with an application in ultra-wideband (UWB) communication signals. The method is based on the sparse characteristic of UWB communication signals in the time domain. Firstly, finding the single source area by calculating the ratio of observed sampling points. Then an algorithm called hough-windowed method was introduced to estimate the number of sources and mixing matrix. Finally the separation of mixing signals using a method based on amended subspace projection. The simulation results indicate that the proposed method can separate UWB communication signals successfully, estimate the mixing matrix with higher accuracy and separate the mixing signals with higher gain compared with other conventional algorithms. At the same time, the method reflects the higher stability and the better noise immunity.