Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mo...Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mode, the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures, cargo and environment. Aiming to develop energy absorbers with impact-force modificator, square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube. A small device is designed to serve as an impact-force modificator, which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube, so as to reduce the peak force. Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption. The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube. With future improvements, it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.展开更多
基金Supported by the Hong Kong Research Grant Council (No.CERG 621S05)
文摘Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mode, the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures, cargo and environment. Aiming to develop energy absorbers with impact-force modificator, square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube. A small device is designed to serve as an impact-force modificator, which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube, so as to reduce the peak force. Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption. The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube. With future improvements, it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.