Hexagonal porous Nb2O5 was synthesized for the first time via a facile solid-state reaction.The structure and electrochemical properties have been optimized through tuning heating temperature.X-ray diffraction results...Hexagonal porous Nb2O5 was synthesized for the first time via a facile solid-state reaction.The structure and electrochemical properties have been optimized through tuning heating temperature.X-ray diffraction results indicate that pseudo hexagonal Nb2O5(TT-Nb2O5)and orthorhombic Nb2O5 have been synthesized at different temperatures.Hexagonal sheet and porous structure of Nb2O5 were characterized by scanning electron microscopy and N2-adsorption-desorption isotherms.The as-prepared TT-Nb2O5(heated at 600℃)shows the best performance with a remarkable charge capacity of 178 mA∙h/g at 0.2C,which is higher than that of T-Nb2O5.Even at 20℃,TT-Nb2O5 offers unprecedented rate capability up to 86 mA∙h/g.The high rate capacity is due to pseudocapacitive Li+intercalation mechanism of TT-Nb2O5.The reported results demonstrate that Nb2O5 with good crystal structure and high specific surface area is a powerful composite design for high-rate and safe anode materials.展开更多
基金Projects(51974137,51774150)supported by the National Natural Science Foundation of ChinaProject(2020M671361)supported by China Postdoctoral Science Foundation。
文摘Hexagonal porous Nb2O5 was synthesized for the first time via a facile solid-state reaction.The structure and electrochemical properties have been optimized through tuning heating temperature.X-ray diffraction results indicate that pseudo hexagonal Nb2O5(TT-Nb2O5)and orthorhombic Nb2O5 have been synthesized at different temperatures.Hexagonal sheet and porous structure of Nb2O5 were characterized by scanning electron microscopy and N2-adsorption-desorption isotherms.The as-prepared TT-Nb2O5(heated at 600℃)shows the best performance with a remarkable charge capacity of 178 mA∙h/g at 0.2C,which is higher than that of T-Nb2O5.Even at 20℃,TT-Nb2O5 offers unprecedented rate capability up to 86 mA∙h/g.The high rate capacity is due to pseudocapacitive Li+intercalation mechanism of TT-Nb2O5.The reported results demonstrate that Nb2O5 with good crystal structure and high specific surface area is a powerful composite design for high-rate and safe anode materials.