针对电动汽车动力电池SOH(state of health)的估算问题,提出一种可以在线运行的有效估算方法.其优势在于仅依托电池管理系统实时测量电压、电流等数据,无需离线电池寿命衰退曲线及电池的初始状态,因此更符合电动汽车对于SOH估算问题的...针对电动汽车动力电池SOH(state of health)的估算问题,提出一种可以在线运行的有效估算方法.其优势在于仅依托电池管理系统实时测量电压、电流等数据,无需离线电池寿命衰退曲线及电池的初始状态,因此更符合电动汽车对于SOH估算问题的实际需求.在电池恒流充电模式下,以Thevenin及OCV-SOC模型为基础,构建以时间和SOH为隐变量的电池模型.基于此电池模型,提出利用NLS(nonlinear least square)初始化GA搜索范围的快速求解算法进行在线参数辨识,得到电动汽车实时的SOH估计值.验证结果表明SOH估计算法具有较好的实用性及较高的估算精度.展开更多
基于等效电路模型的一类车载动力电池剩余荷电状态(state of charge,SOC)的估算方法,其估算精度高度依赖于模型精度,模型精度又正比于模型复杂度,以至于难以较好地应用于嵌入式控制单元.提出复杂度相对较低、能够自适应确定最优模型阶...基于等效电路模型的一类车载动力电池剩余荷电状态(state of charge,SOC)的估算方法,其估算精度高度依赖于模型精度,模型精度又正比于模型复杂度,以至于难以较好地应用于嵌入式控制单元.提出复杂度相对较低、能够自适应确定最优模型阶次的全新等效电路模型——基于阶次自适应AR模型的车载动力电池等效电路灰箱模型.基于此灰箱模型,给出锂离子电池SOC的滑模观测器设计推导及能观性、收敛性证明.结果表明,本文提出的基于阶次自适应AR等效电路灰箱模型的滑模观测器SOC估算方法(adaptive autoregressive-sliding mode observer,AAR-SMO)具有低模型复杂度、高精度、强鲁棒性及快速收敛等性能.展开更多
State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradicti...State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradiction problem between the exact requirements of EKF(extended Kalman filter)algorithm for the battery model and the dynamic requirements of battery mode in life cycle or a charge and discharge period,a completely data-driven SOC estimation algorithm based on EKF algorithm is proposed.The innovation of this algorithm lies in that the EKF algorithm is used to get the SOC accurate estimate of the power battery online with using the observable voltage and current data information of the power battery and without knowing the internal parameter variation of the power battery.Through the combination of data-based and model-based SOC estimation method,the new method can avoid high accumulated error of traditional data-driven SOC algorithms and high dependence on battery model of most of the existing model-based SOC estimation methods,and is more suitable for the life cycle SOC estimation of the power battery operating in a complex and ever-changing environment(such as in an EV or PHEV).A series of simulation experiments illustrate better robustness and practicability of the proposed algorithm.展开更多
针对电池三大关键状态(State of Charge–SOC、State of Health-SOH、State of Power-SOP)之间相互耦合的关系,同时考虑到其估计精度受到电池时变的内部参数等因素影响的问题,提出一种基于自回归等效电路模型(autoregression equivalent...针对电池三大关键状态(State of Charge–SOC、State of Health-SOH、State of Power-SOP)之间相互耦合的关系,同时考虑到其估计精度受到电池时变的内部参数等因素影响的问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的电池关键状态在线联合估计算法.该方法提出基于AR模型的全新电池ECM,给出同时表征SOC、SOH和电池内部压降的状态空间方程以及区别化参数更新策略.在此基础上,考虑状态方程容易发生不正定的问题,提出采用平方根无迹卡尔曼滤波(square root unscent kalman filter,SR-UKF)算法实现电池状态的联合估计.该算法的优势在于真正实现了电池关键状态以及ECM参数的联合估计,更符合实际工程应用需求.仿真验证表明,在噪声干扰环境下,该联合估计器能够得到较高的精确度和稳定性.展开更多
文摘针对电动汽车动力电池SOH(state of health)的估算问题,提出一种可以在线运行的有效估算方法.其优势在于仅依托电池管理系统实时测量电压、电流等数据,无需离线电池寿命衰退曲线及电池的初始状态,因此更符合电动汽车对于SOH估算问题的实际需求.在电池恒流充电模式下,以Thevenin及OCV-SOC模型为基础,构建以时间和SOH为隐变量的电池模型.基于此电池模型,提出利用NLS(nonlinear least square)初始化GA搜索范围的快速求解算法进行在线参数辨识,得到电动汽车实时的SOH估计值.验证结果表明SOH估计算法具有较好的实用性及较高的估算精度.
基金Projects(51607122,51378350)supported by the National Natural Science Foundation of ChinaProject(BGRIMM-KZSKL-2018-02)supported by the State Key Laboratory of Process Automation in Mining&Metallurgy/Beijing Key Laboratory of Process Automation in Mining&Metallurgy Research,China+4 种基金Project(18JCTPJC63000)supported by Tianjin Enterprise Science and Technology Commissioner Project,ChinaProject(2017KJ094,2017KJ093)supported by Tianjin Education Commission Scientific Research Plan Project,ChinaProject(17ZLZXZF00280)supported by Tianjin Science and Technology Project,ChinaProject(18JCQNJC77200)supported by Tianjin Province Science and Technology projects,ChinaProject(2017YFB1103003,2016YFB1100501)supported by National Key Research and Development Plan,China
文摘State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradiction problem between the exact requirements of EKF(extended Kalman filter)algorithm for the battery model and the dynamic requirements of battery mode in life cycle or a charge and discharge period,a completely data-driven SOC estimation algorithm based on EKF algorithm is proposed.The innovation of this algorithm lies in that the EKF algorithm is used to get the SOC accurate estimate of the power battery online with using the observable voltage and current data information of the power battery and without knowing the internal parameter variation of the power battery.Through the combination of data-based and model-based SOC estimation method,the new method can avoid high accumulated error of traditional data-driven SOC algorithms and high dependence on battery model of most of the existing model-based SOC estimation methods,and is more suitable for the life cycle SOC estimation of the power battery operating in a complex and ever-changing environment(such as in an EV or PHEV).A series of simulation experiments illustrate better robustness and practicability of the proposed algorithm.
文摘针对电池三大关键状态(State of Charge–SOC、State of Health-SOH、State of Power-SOP)之间相互耦合的关系,同时考虑到其估计精度受到电池时变的内部参数等因素影响的问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的电池关键状态在线联合估计算法.该方法提出基于AR模型的全新电池ECM,给出同时表征SOC、SOH和电池内部压降的状态空间方程以及区别化参数更新策略.在此基础上,考虑状态方程容易发生不正定的问题,提出采用平方根无迹卡尔曼滤波(square root unscent kalman filter,SR-UKF)算法实现电池状态的联合估计.该算法的优势在于真正实现了电池关键状态以及ECM参数的联合估计,更符合实际工程应用需求.仿真验证表明,在噪声干扰环境下,该联合估计器能够得到较高的精确度和稳定性.