Eu^(2+)and Mn^(2+)co-activated CaAlSiN_(3)red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study...Eu^(2+)and Mn^(2+)co-activated CaAlSiN_(3)red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+)exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+)displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G)to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+)was greatly boosted because there was energy transfer and co-emission between Mn^(2+)and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+)emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+and a blue chip.At a warm white-light corresponding color temperature(3009 K)with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+)would have great application potential as a red-emitting phosphor for white LEDs.展开更多
文摘Eu^(2+)and Mn^(2+)co-activated CaAlSiN_(3)red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+)exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+)displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G)to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+)was greatly boosted because there was energy transfer and co-emission between Mn^(2+)and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+)emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+and a blue chip.At a warm white-light corresponding color temperature(3009 K)with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+)would have great application potential as a red-emitting phosphor for white LEDs.