期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Losses of Soil Organic Carbon and Nitrogen and Their Mechanisms in the Desertification Process of Sandy Farmlands inHorqin Sandy Land 被引量:3
1
作者 su yong-zhong and zhao ha-lin(cold and arid regions environmental and engineering research institute, chinese academy of sciences,lanzhou 730000 , p. r. china) 《Agricultural Sciences in China》 CAS CSCD 2003年第8期890-897,共8页
Soil organic carbon(SOC)and total nitrogen(N)concentrations from bulk soils and soil particle size fractions in the different extent of desertified farmlands(potential, light, medium, severe, and most severe desertifi... Soil organic carbon(SOC)and total nitrogen(N)concentrations from bulk soils and soil particle size fractions in the different extent of desertified farmlands(potential, light, medium, severe, and most severe desertified farmlands)were examined to quantitatively elucidate losses of carbon and nitrogen and its mechanisms in the desertification process. Particle size fractions(2 -0.1 mm, 0.1 - 0.05 mm, <0.05 mm)were obtained by granulometric wet sieving from 30 sandy soils(0 - 15cm depth)of different desertified extent. It was shown that soil physical stability index(St)in most severe desertified farmlands was 5 -7% and St in other farmlands was less than 5 %, which contributed to very low soil organic matter content. This was the intrinsic cause that sandy farmlands in Horqin sandy land was subject to risk of desertification. Desertification resulted in considerable losses of SOC and N. Regression analysis indicated that SOC and N content reduced 0.169 g kg-1 and 0.0215 g kg-1 respectively with one percent loss of soil silt and clay content. Losses of SOC and N were mostly the removal of fine particle size fractions(silt and clay, and a less extent very fine sand)from the farmlands by wind erosion, which were rich in organic matter and nutrients, as well as the depletion of organic C and N associated with coarse particles(>0. 05 mm)in desertification process. The concentrations of C and N associated with sand(2 - 0.1 mm and 0.1 - 0.05 mm)significantly decreased with increase of desertified extent. Silt and clay associated C and N concentrations, however, were less changed, and in contrast, were higher in soils under most severe desertified extent than in soils under potential and severe desertified extent. The percentage of distribution in sand(>0.05 mm)associated C and N significantly increased with increase of desertified extent, suggesting that stability of SOC decreased in the desertification process. 展开更多
关键词 Farmland desertification Soil organic carbon Total nitrogen Mechanisms of losses
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部