Baroreflex plays a significant role in modulating blood pressure for the human body.It is known that activation of the vagal nerve related to baroreflex can lead to reductions of blood pressure.However,how the vagal a...Baroreflex plays a significant role in modulating blood pressure for the human body.It is known that activation of the vagal nerve related to baroreflex can lead to reductions of blood pressure.However,how the vagal activities quantitatively relate with blood pressure can hardly be achieved.Here fine carbon nanotube yarn(CNTy)electrodes were adopted for recording intrafascicular vagal activities,synchronized with measurement of arterial blood pressure in a rat.Together with a novel algorithm,the results preliminarily quantified that there were six clusters of neural spikes within recorded vagal activities,and the number of individual vagal spikes correspondingly varied with blood pressure.Especially for Cluster 2,the neural activations decreased with arterial blood pressure increasing.This study can shed lights on the quantified neural mechanism underlying the control of vagal activities on blood pressure,and guide the vagal-nerve neuromodulation for treating hypertension.展开更多
The vagus nerve carries sensory information from multiple organs in the body.The recording of its activity and further processing is a key step for neuromodulation treatments.This paper presents a specific algorithm f...The vagus nerve carries sensory information from multiple organs in the body.The recording of its activity and further processing is a key step for neuromodulation treatments.This paper presents a specific algorithm for the processing and discrimination of intrafascicular recordings from the vagus nerve using the novel carbon nanotube yarn electrodes.Up to four different neural waveforms were found,whose occurrence corresponded to distinct levels of anesthesia depth.展开更多
Transcutaneous electrical nerve stimulation(TENS) has been widely used for sensory feedback which is a key consideration of improving the performance of prosthetic hands. Two-electrode discriminability is the key to r...Transcutaneous electrical nerve stimulation(TENS) has been widely used for sensory feedback which is a key consideration of improving the performance of prosthetic hands. Two-electrode discriminability is the key to realize high-spatial-resolution TENS, but the neural firing mechanism is not clear yet. The goal of this research is to investigate the neural firing patterns under two-electrode stimulation and to reveal the potential mechanisms. A three-dimensional(3 D) model is established by incorporating Aβ fiber neuron clusters into a layered forearm structure. The diameters of the stimulating electrodes are selected as 5, 7, 9 and 12 mm, and the two-electrode discrimination distance(TEDD) is quantified. It is found that a distant TEDD is obtained for a relatively large electrode size, and 7 mm is suggested to be the optimal diameter of stimulating electrodes. The present study reveals the neural firing patterns under two-electrode stimulation by the 3 D TENS model. In order to discriminate individual electrodes under simultaneous stimulation, no crosstalk of activated Aβ fibers exists between two electrodes. This research can further guide the optimization of the electrode-array floorplan.展开更多
基金the Innovation Studio from School of Biomedical Engineering,Shanghai Jiao Tong University,and the Medical-Engineering Cross Project of Shanghai Jiao Tong University(No.YG2017MS53)。
文摘Baroreflex plays a significant role in modulating blood pressure for the human body.It is known that activation of the vagal nerve related to baroreflex can lead to reductions of blood pressure.However,how the vagal activities quantitatively relate with blood pressure can hardly be achieved.Here fine carbon nanotube yarn(CNTy)electrodes were adopted for recording intrafascicular vagal activities,synchronized with measurement of arterial blood pressure in a rat.Together with a novel algorithm,the results preliminarily quantified that there were six clusters of neural spikes within recorded vagal activities,and the number of individual vagal spikes correspondingly varied with blood pressure.Especially for Cluster 2,the neural activations decreased with arterial blood pressure increasing.This study can shed lights on the quantified neural mechanism underlying the control of vagal activities on blood pressure,and guide the vagal-nerve neuromodulation for treating hypertension.
基金the National Natural Science Founda-tion of China(No.81671801)the Medical-Engineering Cross Project of Shanghai Jiao Tong University(No.YG2017MS53)the Innovation Studio from School of Biomedical Engineering,Shanghai Jiao Tong University。
文摘The vagus nerve carries sensory information from multiple organs in the body.The recording of its activity and further processing is a key step for neuromodulation treatments.This paper presents a specific algorithm for the processing and discrimination of intrafascicular recordings from the vagus nerve using the novel carbon nanotube yarn electrodes.Up to four different neural waveforms were found,whose occurrence corresponded to distinct levels of anesthesia depth.
基金the National Natural Science Foundation of China(No.81671801)the Innovation Studio Fund from School of Biomedical Engineering at Shanghai Jiao Tong Universitythe Medical-Engineering Cross Project of Shanghai Jiao Tong University(No.YG2017MS53)
文摘Transcutaneous electrical nerve stimulation(TENS) has been widely used for sensory feedback which is a key consideration of improving the performance of prosthetic hands. Two-electrode discriminability is the key to realize high-spatial-resolution TENS, but the neural firing mechanism is not clear yet. The goal of this research is to investigate the neural firing patterns under two-electrode stimulation and to reveal the potential mechanisms. A three-dimensional(3 D) model is established by incorporating Aβ fiber neuron clusters into a layered forearm structure. The diameters of the stimulating electrodes are selected as 5, 7, 9 and 12 mm, and the two-electrode discrimination distance(TEDD) is quantified. It is found that a distant TEDD is obtained for a relatively large electrode size, and 7 mm is suggested to be the optimal diameter of stimulating electrodes. The present study reveals the neural firing patterns under two-electrode stimulation by the 3 D TENS model. In order to discriminate individual electrodes under simultaneous stimulation, no crosstalk of activated Aβ fibers exists between two electrodes. This research can further guide the optimization of the electrode-array floorplan.