期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mesoscale eddies in the South China Sea and their impact on temperature profiles 被引量:11
1
作者 WANGGuihua sujilan LIRongfeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第1期39-45,共7页
Some life history statistics of the mesoscale eddies of the South China Sea (SCS) derived from altimetry data will be further discussed according their different formation periods. A total of three ATLAS (autonomous t... Some life history statistics of the mesoscale eddies of the South China Sea (SCS) derived from altimetry data will be further discussed according their different formation periods. A total of three ATLAS (autonomous temperature line acquisition system)mooring buoys data will be analyzed to discuss eddies' impact on temperature profiles.They identify that the intraseasonal variation of SCS thermocline is partly controlled by mesoscale eddies. 展开更多
关键词 mesoscale eddies ATLAS South China Sea
下载PDF
Calculation of circulation in the South China Sea during summer of 2000 by the modified inverse method 被引量:8
2
作者 YUANYaochu LIUYonggang +3 位作者 LIAOGuanghong LOURuyun sujilan WANGKangshan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第1期14-30,共17页
On the basis of hydrographic data obtained in August 2000 cruise, the circulation in the South China Sea (SCS) is computed by the modified inverse method in combination with SSH data from TOPEX/ERS-2 analysis. For stu... On the basis of hydrographic data obtained in August 2000 cruise, the circulation in the South China Sea (SCS) is computed by the modified inverse method in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of summer circulation in the SCS, the diagnostic model (Yuan et al. 1982. Acta Oceanologica Sinica,4(1):1-11; Yuan and Su. 1992. Numerical Computation of Physical Oceanography.474-542) is used to simulate numerically the summer circulation in the SCS. The following results have been obtained. (1) The central and southwestern SCSs are dominated mainly by anticy-clonic circulation systems. They are mainly as follows. 1) There is strong anticyclonic eddy southeast of Vietnam (W1). Its horizontal scale is about 300 km, and it extends vertically from the surface to the about 1 000 m level. 2) There are a warm eddy W2 southeast of Zhongsha Islands and the anticyclonic circulation system W3 west off the Luzon Island. 3) There is a stronger cyclonic eddy C1 between the anticyclonic eddies W1 and W2.4) A strong northward coastal jet is present near the coast of Vietnam, and separates from the coast of Vietnam at about 12° N to the northeast.(2)The northern SCS is dominated mainly by a cyclonic circulation system. There is a cyclonic circulation system near and north of Section N2. (3) The southeastern SCS is dominated mainly by the cyclonic circulation system. (4) Comparing the results of circulation in the SCS during the summer of 2000 with those during the summer of 1998, it is found that they agree qualitatively, but there is the some difference between them in quantity.This shows that the circulation in the SCS has obviously seasonal feature. (5) The dynamical mechanism which products the basic pattern of summer circulation is because the following two reasons: 1) the joint effect of the baroclinity and relief (JEBAR) is essential dynamical cause; and 2) it is next important dynamical cause that the interaction between the wind stress and bottom topography under the southerly monsoon. (6) Comparing the hydrographic structure and distribution of stream functions with the SSH data from TOPEX/ERS-2 analysis in the SCS during August of 2000, they agree qualitatively. 展开更多
关键词 SCS circulation in the summer of 2000 JEBAR interaction between the wind stress and bottom topography SSH data from TOPEX/ERS-2 modified inverse method
下载PDF
A model study of influence of circulation on the pollutant transport in the Zhujiang River Estuary and adjacent coastal waters 被引量:6
3
作者 WONGLaiAh GUANWeibing +1 位作者 CHENJay-Chung sujilan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2004年第2期225-237,共13页
A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pol... A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pollutants. It is focused on answering the following questions: (1) What role does the estuarine plume front in the winter play in affecting the pollutants transport and its distribution in the PRE ? (2) What effect do the coastal currents driven by the monsoon have on the pollutants transport? The tracer experiment results show that: (1) the pollutant transport paths strongly depend on the circulation structures and plume frontal dynamics of the PRE and coastal waters; (2) during the summer when a southwesterly monsoon prevails, the pollutants from the four easterly river inlets and those from the bottom layer of offshore stations will greatly influence the water quality in Hong Kong waters, however, the pollutants released from the four westerly river-inlets will seldom affect the water qual 展开更多
关键词 3D numerical modeling pollutant matter transport Zhujiang River Estuary
下载PDF
Numerical study on the summer circulation of the upper South China Sea and its establishment 被引量:2
4
作者 CAIShuqun sujilan +2 位作者 LONGXiaomin WANGShengan HUANGQizhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第1期31-38,共8页
A coupled single-layer/two-layer model is employed to study the South China Sea (SCS) upper circulation and its response before and after the onset of summer monsoon. It is found that, in summer, due to the β effect ... A coupled single-layer/two-layer model is employed to study the South China Sea (SCS) upper circulation and its response before and after the onset of summer monsoon. It is found that, in summer, due to the β effect and the first baroclinic mode of the wind-driven current, a northward western boundary jet current is formed along the Indo-China Peninsula coast, and it leaves the coast at about 13° N and diffuses towards northeast; next to the Indo-China Peninsula, a large anticyclonic gyre in the southern SCS and a cyclonic eddy to the north of this gyre are induced. There are two possible mechanisms for the generation of this anticyclonic gyre: first, it is induced by the summer wind stress curl; second, it is associated with the westward moving of two anticyclonic eddies, which are originally generated to the west of Palawan Island and over the Nansha Trough respectively, in winter. The cyclonic eddy north of this anti-cyclonic gyre may be induced by the summer wind stress curl or related to the southwestward moving of the cyclonic eddy/gyre induced by the Kuroshio branch in the northern SCS. 展开更多
关键词 numerical modeling CIRCULATION MONSOON EDDY South China Sea
下载PDF
Currents in the Luzon Strait during the spring of 2002: observation and computation by modified inverse model 被引量:1
5
作者 YUANYaochu LOURuyun +3 位作者 LIUYonggang sujilan WANGKangshan CHENHong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第1期1-13,共13页
On the basis of the current measurements at 200,500 and 800 m from moored current meters with the time series data from March 17 to April 15 at the mooring station (20°49′57″N, 120°48′ 12″E) and the hydr... On the basis of the current measurements at 200,500 and 800 m from moored current meters with the time series data from March 17 to April 15 at the mooring station (20°49′57″N, 120°48′ 12″E) and the hydrographic data obtained in the Luzon Strait during the spring of 2002 cruise, the circulation in the investigated area is computed by using the modified inverse method. The major observed results are as follows: (1) the average velocity and the flow direction in the observing days are (47.4 cm/s, 346°) at the 200 m level. The average velocity in the observing days is (20.3 cm/s, 350? at the 500 m level. These mean that the Kuroshio intrudes into the South Chin Sea to flow northwestward through the Luzon Strait at 200 and 500 m levels. (2) The average velocity in the observing days is (1.2 cm/s, 35°) at the 800 m level, i. e., its direction is northeastward. This means that the flow condition at the 800 m level very differs from mat at the 200 and 500 m levels. (3) There is the high density and cold water (HDCW) in the middle of western part of in the investigated region, and its center is located near the hydrological station 3 at Section A. (4) There is the lower density and warm water (LDWW) in the southeastern part of investigated region. (5) The currents in April 2002 are stronger than those in March 2002.The major computed results are as follows: (1) The northwestward and southeastward VTs through Section B are 32.48×106 m3/s (inclusive of VT of anticyclonic eddy) and 3.34×106m3/s, respectively. The net northwestward VT through Section B in the investigated area is about 29.14×106 m3/s. (2) The eastern and western VTs through Section A are about 16.71×106 and 8.57×106 m3/s, respectively. Thus, the net eastward VT through Section A is about 8.14×106 m3/s. (3) The net northward VT through Section M is about 24.68×106 m3/s. (4) After about 24.68×106 m3/s flows through Section M, most of it, about 16.54×106 m3/s, flows northward through the eastern part of Section C and then flows northward into the region east Taiwan Island. The other part of it, about 8.14×106 m3/s, branches out from the main Kuroshio and then flows meanderingly through the western part of Section C. Thus, the Kuroshio has the two cores of current at Section C. (5) The direction of the computed current near the mooring station M agrees with the direction of the current measurements at 200 and 500 m from moored current meters, i.e., their directions both are northwestward. (6) About 3.34×106 m3/s of the South Chin Sea water probably flows slowly from the northwest to the southeast in the layer below 550 m at the western part of Section B. 展开更多
关键词 currents in the Luzon Strait during the spring of 2002 currents measurements modified inverse method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部