The aging properties of Cu-0.35Cr-0.038Zr-0.055Ce alloy are studied. The results show that can obtain higher electrical conductivity and microhardness after solutioned at 920°Cfor Ih, and aged at 500°C. The ...The aging properties of Cu-0.35Cr-0.038Zr-0.055Ce alloy are studied. The results show that can obtain higher electrical conductivity and microhardness after solutioned at 920°Cfor Ih, and aged at 500°C. The process of precipitation of the secondary phase can be accelerated with cold deformation before aging, so properties of the alloy are improved. Upon aging at 500°C for 30 minutes after 60% cold deformation, the values of electrical conductivity and microhardness are 69.0%IACS and 152HV respectively, but they are only 66.2%IACS and 136HV upon directly aging after solution. With the addition of a trace of rare earth element Ce, the value of microhardness of Cu-0.35Cr-0.038Zr alloy increases 18-25HV, while the value of electrical conductivity drops a little.展开更多
This paper presents the effects of aging processes on the properties and microstructure of Cu-0.3Cr-0.15Zr-0.05Mg lead frame alloy. Optimal conditions for good hardening and electrical conductivity can be obtained by ...This paper presents the effects of aging processes on the properties and microstructure of Cu-0.3Cr-0.15Zr-0.05Mg lead frame alloy. Optimal conditions for good hardening and electrical conductivity can be obtained by solution treating at 920 °C for Ih and aging at 470^0 for 4h and at 550^ for Ih. The hardness and electrical conductivity can reach 108HV, 73%IACS and 106HV, 76%IACS, respectively. Aging precipitation was dealt with by transmission electronic microscope (TEM). At 470 °C aging for 4h the fine precipitation of an ordered compound CrCu2(Zr,Mg) is found in matrix as well as fine Cr and Cu4Zr. Aging at 550’C for Ih some precipitates are still coherent with matrix. The CrCu2(Zr,Mg) completely dissolves into Cr and Cu4Zr.展开更多
基金supported by the National 863 Plan Items of China(No.2002AA331112)
文摘The aging properties of Cu-0.35Cr-0.038Zr-0.055Ce alloy are studied. The results show that can obtain higher electrical conductivity and microhardness after solutioned at 920°Cfor Ih, and aged at 500°C. The process of precipitation of the secondary phase can be accelerated with cold deformation before aging, so properties of the alloy are improved. Upon aging at 500°C for 30 minutes after 60% cold deformation, the values of electrical conductivity and microhardness are 69.0%IACS and 152HV respectively, but they are only 66.2%IACS and 136HV upon directly aging after solution. With the addition of a trace of rare earth element Ce, the value of microhardness of Cu-0.35Cr-0.038Zr alloy increases 18-25HV, while the value of electrical conductivity drops a little.
文摘This paper presents the effects of aging processes on the properties and microstructure of Cu-0.3Cr-0.15Zr-0.05Mg lead frame alloy. Optimal conditions for good hardening and electrical conductivity can be obtained by solution treating at 920 °C for Ih and aging at 470^0 for 4h and at 550^ for Ih. The hardness and electrical conductivity can reach 108HV, 73%IACS and 106HV, 76%IACS, respectively. Aging precipitation was dealt with by transmission electronic microscope (TEM). At 470 °C aging for 4h the fine precipitation of an ordered compound CrCu2(Zr,Mg) is found in matrix as well as fine Cr and Cu4Zr. Aging at 550’C for Ih some precipitates are still coherent with matrix. The CrCu2(Zr,Mg) completely dissolves into Cr and Cu4Zr.