We consider a category of continuous Hilbert space representations and a category of smooth Fr'echet representations,of a real Jacobi group G.By Mackey's theory,they are respectively equivalent to certain cate...We consider a category of continuous Hilbert space representations and a category of smooth Fr'echet representations,of a real Jacobi group G.By Mackey's theory,they are respectively equivalent to certain categories of representations of a real reductive group L.Within these categories,we show that the two functors that take smooth vectors for G and for L are consistent with each other.By using Casselman-Wallach's theory of smooth representations of real reductive groups,we define matrix coefficients for distributional vectors of certain representations of G.We also formulate Gelfand-Kazhdan criteria for real Jacobi groups which could be used to prove multiplicity one theorems for Fourier-Jacobi models.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos. 10801126 and 10931006)
文摘We consider a category of continuous Hilbert space representations and a category of smooth Fr'echet representations,of a real Jacobi group G.By Mackey's theory,they are respectively equivalent to certain categories of representations of a real reductive group L.Within these categories,we show that the two functors that take smooth vectors for G and for L are consistent with each other.By using Casselman-Wallach's theory of smooth representations of real reductive groups,we define matrix coefficients for distributional vectors of certain representations of G.We also formulate Gelfand-Kazhdan criteria for real Jacobi groups which could be used to prove multiplicity one theorems for Fourier-Jacobi models.