In this paper, under the Painleve-integrable condition, the auto-Biicklund transformations in different forms for a variable-coefficient Korteweg-de Vries model with physical interests are obtained through various met...In this paper, under the Painleve-integrable condition, the auto-Biicklund transformations in different forms for a variable-coefficient Korteweg-de Vries model with physical interests are obtained through various methods including the Hirota method, truncated Painleve expansion method, extendedvariable-coefficient balancing-act method, and Lax pair. Additionally, the compatibility for the truncated Painleve expansion method and extended variable-coetfficient balancing-act method is testified.展开更多
基金supported by the Key Project of the Ministry of Education under Grant No.106033Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024+2 种基金Ministry of Education,National Natural Science Foundation of China under Grant Nos.60372095 and 60772023Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-07-001Beijing University of Aeronautics and Astronautics,and National Basic Research Program of China (973 Program) under Grant No.2005CB321901
文摘In this paper, under the Painleve-integrable condition, the auto-Biicklund transformations in different forms for a variable-coefficient Korteweg-de Vries model with physical interests are obtained through various methods including the Hirota method, truncated Painleve expansion method, extendedvariable-coefficient balancing-act method, and Lax pair. Additionally, the compatibility for the truncated Painleve expansion method and extended variable-coetfficient balancing-act method is testified.