The electronic structures and optical properties of Y-doped ZnO are calculated using first-principles calculations.It is found that the replacement of Zn by the rare-earth element Y presents a shallow donor,and the Fe...The electronic structures and optical properties of Y-doped ZnO are calculated using first-principles calculations.It is found that the replacement of Zn by the rare-earth element Y presents a shallow donor,and the Fermi level moves into the conduction band(CB).The high dispersion and s-type character of CB is expected to result in an increase in conductivity.Moreover,the absorption spectrum of the Y-doped ZnO system exhibits a slight blue shift with an increase of Y concentration,and a higher transparency in visible light is expected.Therefore,the Y-doping in ZnO would enhance the mobility and hence increase the electrical conductivity without sacrificing the optical transparency,which is essential for the improvement of ZnO's behavior and its performance in extension applications.展开更多
基金Supported by the National Basic Research Program of China(No 2010CB631001)the National Natural Science Foundation of China(No 50871046)+1 种基金the Programs of Science and Technology Department of Heilongjiang Province(No QC2011C026)the Program for Changjiang Scholars and Innovative Research Team in University.
文摘The electronic structures and optical properties of Y-doped ZnO are calculated using first-principles calculations.It is found that the replacement of Zn by the rare-earth element Y presents a shallow donor,and the Fermi level moves into the conduction band(CB).The high dispersion and s-type character of CB is expected to result in an increase in conductivity.Moreover,the absorption spectrum of the Y-doped ZnO system exhibits a slight blue shift with an increase of Y concentration,and a higher transparency in visible light is expected.Therefore,the Y-doping in ZnO would enhance the mobility and hence increase the electrical conductivity without sacrificing the optical transparency,which is essential for the improvement of ZnO's behavior and its performance in extension applications.