期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Numerical Method for Area and Volume Calculation
1
作者 Ning Tao Tang Rongxi sun jiaguang 《Computer Aided Drafting,Design and Manufacturing》 1998年第2期57-60,共4页
The Calculation of area and volume of B-rep solid is discussed, and a numerical method is presented. The method is based on the integrand simplification of the double integral by quadratic triangular Bezier interpolat... The Calculation of area and volume of B-rep solid is discussed, and a numerical method is presented. The method is based on the integrand simplification of the double integral by quadratic triangular Bezier interpolation. 展开更多
关键词 B-rep solid double integral quadratic triangular Bezier interpolation
全文增补中
An Algorithm of B-Spline Surface Interpolation
2
作者 Ning Tao Tang Rongxi sun jiaguang 《Computer Aided Drafting,Design and Manufacturing》 1998年第2期38-42,共5页
A surface interpolation algorithm is presented. By using a special kind of knot vector. a B-spline surface can be constructed to interpolate an array of m ×n positions, including parameter u and v tangent vectors... A surface interpolation algorithm is presented. By using a special kind of knot vector. a B-spline surface can be constructed to interpolate an array of m ×n positions, including parameter u and v tangent vectors and twist vector at each positions. Single surface interpolation approach is easier to ensure the smoothness of the interpolating surface than multi-patches method. This algorithm can be used to solve the approximating problem of B-spline approximation of general parametric surface. 展开更多
关键词 B-SPLINE surface modeling twist vector
全文增补中
大数据软件的机遇与挑战
3
作者 孙家广 《科技导报》 CAS CSCD 北大核心 2020年第3期1-2,共2页
2019年,大数据、数据科学、机器学习、人工智能领域的研究与应用持续发展。物联网与传感设备的普及带来数据的爆炸性增长。大数据作为产业发展的创新要素,在数据科学与技术、商业模式、产业格局、生态价值与教育层面,均带来了新理念和... 2019年,大数据、数据科学、机器学习、人工智能领域的研究与应用持续发展。物联网与传感设备的普及带来数据的爆炸性增长。大数据作为产业发展的创新要素,在数据科学与技术、商业模式、产业格局、生态价值与教育层面,均带来了新理念和新思维。大数据与人工智能的快速普及应用除了受数据量激增因素影响外,还有另外两方面因素影响:一是深度神经网络算法处理大规模非结构化数据集的能力越来越强;二是算力的飞跃。随着光刻技术进一步发展,终端设备和边缘设备的数据处理能力持续提高,云、端与边缘计算结合,实现低成本海量可用计算资源。 展开更多
关键词 非结构化数据 深度神经网络 人工智能 大数据 机器学习 物联网 传感设备 光刻技术
原文传递
Scan BIST with biased scan test signals 被引量:1
4
作者 XIANG Dong CHEN MingJing sun jiaguang 《Science in China(Series F)》 2008年第7期881-895,共15页
The conventional test-per-scan built-in self-test (BIST) scheme needs a number of shift cycles followed by one capture cycle. Fault effects received by the scan flipflops are shifted out while shifting in the next t... The conventional test-per-scan built-in self-test (BIST) scheme needs a number of shift cycles followed by one capture cycle. Fault effects received by the scan flipflops are shifted out while shifting in the next test vector like scan testing. Unlike deterministic testing, it is unnecessary to apply a complete test vector to the scan chains. A new scan-based BIST scheme is proposed by properly controlling the test signals of the scan chains. Different biased random values are assigned to the test signals of scan flip-flops in separate scan chains. Capture cycles can be inserted at any clock cycle if necessary. A new testability estimation procedure according to the proposed testing scheme is presented. A greedy procedure is proposed to select a weight for each scan chain. Experimental results show that the proposed method can improve test effectiveness of scan-based BIST greatly, and most circuits can obtain complete fault coverage or very close to complete fault coverage. 展开更多
关键词 random testability scan-based BIST test signal biased random testing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部