We examine two-pion Bose-Einstein correlations for partially coherent particle-emitting sources within quantum statistical formal- ism, where the sources are treated as classical currents with chaotic and coherent com...We examine two-pion Bose-Einstein correlations for partially coherent particle-emitting sources within quantum statistical formal- ism, where the sources are treated as classical currents with chaotic and coherent components. The two-pion correlation functions of the partially coherent sources contain a phase which is sensitive to the asymmetry of the source emission function. We investigate the influence of source opacity and expansion in high energy heavy ion collisions on the phase by Monte Carlo calculations. We find that these two physical effects shift the phase from zero. The Gaussian-formula fit results to the simulated two-pion correlation functions indicate that the opaque and expansion effects lead to a smaller interferometry radius Rout and a larger 2 parameter.展开更多
基金supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. A201005)
文摘We examine two-pion Bose-Einstein correlations for partially coherent particle-emitting sources within quantum statistical formal- ism, where the sources are treated as classical currents with chaotic and coherent components. The two-pion correlation functions of the partially coherent sources contain a phase which is sensitive to the asymmetry of the source emission function. We investigate the influence of source opacity and expansion in high energy heavy ion collisions on the phase by Monte Carlo calculations. We find that these two physical effects shift the phase from zero. The Gaussian-formula fit results to the simulated two-pion correlation functions indicate that the opaque and expansion effects lead to a smaller interferometry radius Rout and a larger 2 parameter.