期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Identification of the miniature pig inbred line by skin allograft 被引量:2
1
作者 MU Yu-lian LIU Lan +12 位作者 FENG Shu-tang WU Tian-wen LI Kui LI Jun-you HE Wei GAO Qian ZHOU Wen-fang WEI Jing-liang TANG Fang YANG Shu-lin WU Zhi-gu XIA Ying sun tong-zhu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第7期1376-1382,共7页
Skin grafting has been used as one of the most reliable tests to determine the genetic stability of laboratory animal such as mice and rats inbred line, but no identification of swine inbred lines by skin grafting has... Skin grafting has been used as one of the most reliable tests to determine the genetic stability of laboratory animal such as mice and rats inbred line, but no identification of swine inbred lines by skin grafting has been reported. At present, Wuzhishan miniature pig (WZSP) inbred line has acquired the F24 individuals in China. In order to verify whether WZSP inbred line had D^en cultivated successfully, allogeneic skin grafts and related research were performed on F20 individuals of WZSP inbreeding population, compared with a control group of autologous transplantation. We observed the transplant recipients' wounds, detected peripheral blood-related indicators interleukin-2, 4 and 10, CD4~ and CD8~ lymphocytes, and conducted hematoxylin-eosin (HE) and Masson's staining of skin to judge whether the immune rejection reactions occurred within 28 days after transplantation. Chr. 7 genomic heterozygosity of 48 WZSP individuals from F20 to F22 was analyzed by high-density single nucleotide polymorphism (SNP) chips (60 000 SNPs). The result showed that there were no significant differences in graft skin, the plasma interleukin-2, 4, 10, CD4~ and CD8~, HE and Masson's staining results between the allograft and autograft groups, and no immune rejection occurred on the allograft group. We found that 11 genes in Chr. 7 of major histocompatibility complex (MHC) I and MHC II were homozygous which confirmed that immune antibody of the allograft and autograft groups were highly identical and also provided a theoretical basis to no immune rejection occurred on the allograft in the inbred WZSP. The result proved that the WZSP inbred line had been cultivated successfully for the first time in the world. The test methods also provide a scientific basis for the identification of swine and mammal inbred lines. 展开更多
关键词 Wuzhishan miniature pigs inbred line skin allograft immune rejection
下载PDF
Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands 被引量:19
2
作者 CAI Sa PAN Yu +3 位作者 HAN Bing sun tong-zhu SHENG Zhi-yong FU Xiao-bing 《Chinese Medical Journal》 SCIE CAS CSCD 2011年第15期2260-2268,共9页
Background Patients with severe full-thickness burn injury suffer from their inability to maintain body temperature through perspiration because the complete destructed sweat glands can not be regenerated. Bone marrow... Background Patients with severe full-thickness burn injury suffer from their inability to maintain body temperature through perspiration because the complete destructed sweat glands can not be regenerated. Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent an ideal stem-cell source for cell therapy because of their easy purification and multipotency. In this study, we attempted to induce human BM-MSCs to differentiate into sweat gland cells for sweat gland regeneration through ectodysplasin (EDA) gene transfection. Methods The dynamic expression of EDA and EDA receptor (EDAR) were firstly observed in the sweat gland formation during embryological development. After transfection with EDA expression vector, human BM-MSCs were transplanted into the injured areas of burn animal models. The regeneration of sweat glands was identified by perspiration test and immunohistochemical analysis. Results Endogenous expression of EDA and EDAR correlated with sweat gland development in human fetal skin. After EDA transfection, BM-MSC acquired a sweat-gland-cell phenotype, evidenced by their expression of sweat gland markers by flow cytometry analysis. Immunohistochemical staining revealed a markedly contribution of EDA-transfected BM-MSCs to the regeneration of sweat glands in the scalded paws. Positive rate for perspiration test for the paws treated with EDA-transfected BM-MSCs was significantly higher than those treated with BM-MSCs or EDA expression vector (P 〈0.05). Conclusions Our results confirmed the important role of EDA in the development of sweat gland. BM-MSCs transfected with EDA significantly improved the sweat-gland regeneration. This study suggests the potential application of EDA-modified MSCs for the repair and regeneration of injured skin and its appendages. 展开更多
关键词 bone marrow-derived mesenchymal stem cells sweat gland ECTODYSPLASIN REGENERATION
原文传递
Future application of hair follicle stem cells: capable in differentiation into sweat gland cells 被引量:9
3
作者 WANG Yao LIU Zhi-yue +3 位作者 ZHAO Qing sun tong-zhu MA Kui FU Xiao-bing 《Chinese Medical Journal》 SCIE CAS CSCD 2013年第18期3545-3552,共8页
Background Sweat glands (SGs) can not regenerate after complete destruction in the severe skin injury, so it is important to find a ideal stem cell source in order to regenerate functional SGs. Hair follicle stem ce... Background Sweat glands (SGs) can not regenerate after complete destruction in the severe skin injury, so it is important to find a ideal stem cell source in order to regenerate functional SGs. Hair follicle stem cells (HFSCs) possess the obvious properties of the adult stem cells, which are multipotent and easily accessible. In this research, we attempted to direct the HFSCs suffered from the sweat gland cells (SGCs) special differentiation by a cooperative co- culture system in vitro. Methods The designed co-culture microenvironment in the transwell was consist of two critial factors: heat shocked SGCs and dermis-like mesenchymal tissue, which appeared independently in the two control groups; after induction, the purified induced SGC-like cells were transplanted into the full-thickness scalded wounds of the nude mice, after 4 weeks, the reconstructed SG-like structures were identified by immunohistochemical and immunofluorescence analysis. Results A part of HFSCs in experimental group finally expressed SGCs phenotypes, by contrast, the control group 1 which just containing dermis-like mesenchymal tissue failed and the control group 2 consisted of heat shocked SGCs was in a poor efficiency; by immunofluorescence staining and flow cytometry analysis, the expression of HFSCs special biomarkers was down regulated, instead of the positive efficiency of SGCs special antigens increased; besides, the induced SGCs displayed a high expression of ectodysplasin A (EDA) and ectodysplasin A receptor (EDAR) genes and proteins; after cell transplantation, the youngest SG-like structures formed and be positive in SGCs special antigens, which never happened in untreated wounds (P 〈0.05). Conclusion The HFSCs are multipotential and capable in differentiating into SGCs which promise a potential stem cells reservoir for future use; our special co-culture microenvironment is promising for HFSCs differentiating; the induced SGCs are functional and could work well in the regeneration of SGs. 展开更多
关键词 sweat gland hair follicle stem cells INDUCTION DIFFERENTIATION REGENERATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部