The authors show that the self-similar set for a finite family of contractive similitudes (similarities, i.e., |fi(x) - fi(y)| = αi|x - y|, x,y ∈ RN, where 0 < αi < 1) is uniformly perfect except the case tha...The authors show that the self-similar set for a finite family of contractive similitudes (similarities, i.e., |fi(x) - fi(y)| = αi|x - y|, x,y ∈ RN, where 0 < αi < 1) is uniformly perfect except the case that it is a singleton. As a corollary, it is proved that this self-similar set has positive Hausdorff dimension provided that it is not a singleton. And a lower bound of the upper box dimension of the uniformly perfect sets is given. Meanwhile the uniformly perfect set with Hausdorff measure zero in its Hausdorff dimension is given.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10171090, No.10231040).
文摘The authors show that the self-similar set for a finite family of contractive similitudes (similarities, i.e., |fi(x) - fi(y)| = αi|x - y|, x,y ∈ RN, where 0 < αi < 1) is uniformly perfect except the case that it is a singleton. As a corollary, it is proved that this self-similar set has positive Hausdorff dimension provided that it is not a singleton. And a lower bound of the upper box dimension of the uniformly perfect sets is given. Meanwhile the uniformly perfect set with Hausdorff measure zero in its Hausdorff dimension is given.