Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope...Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope Stage (MIS) 3 by a combination of Accelerator Mass Spectrometric (AMS) carbon-14 dating and regional core correlation. A total of five prominent ice-rafted detritus (IRD) events were recognized in MIS 2 and MIS 3. The IRD sources in MIS 3 are originated from vast carbonate rock outcrops of the Canadian Arctic Archipelago and clastic quartz in MIS 2 may have a Eurasian origin. Mostδ18O andδ13C values of Neogloboquadrina pachyderma (sinistral) (Nps) in Core 08P23 are lighter than the average values of surface sediments. The lighterδ18O andδ13C values of Nps in the two brown layers in MIS 1 and MIS 3 were resulted from meltwater events; and those in the gray layers in MIS 3 were caused by the enhanced sea ice formation. Theδ18O values varied inversely withδ13C in MIS 2 indicate that the study area was covered by thick sea ice or ice sheet with low temperature and little meltwater, which prevented the biological productivity and sea-atmosphere exchange, as well as water mass ventilation. The covaried light values ofδ18O andδ13C in MIS 1 and MIS 3 were resulted from meltwater and/or brine injection.展开更多
Terrigenous components in sediment core B84A from the Alpha Ridge, Western Arctic Ocean, have been investigated to reconstruct Mid to Late Quaternary variations in sedimentation, provenance, and related climate change...Terrigenous components in sediment core B84A from the Alpha Ridge, Western Arctic Ocean, have been investigated to reconstruct Mid to Late Quaternary variations in sedimentation, provenance, and related climate changes. The core stratigraphy, evaluated by a combination of variations in Mn content, color cycles, foraminiferal abundance, and lithological correlation, extends back to estimated Marine Isotope Stage 12. Twelve Ice Rafted Detritus (IRD, 〉250 ttm) events were identified and interpreted to mostly occur during deglaciation. The Canadian Arctic, which was covered by ice sheets during glacial periods, is suggested to be the major source region. The IRD events likely indicate the collapses of ice sheets, possibly in response to abrupt climate changes. Grain size analysis of B84A indicates sedimentologically sensitive components in core B84A in the 4 9 #m and 19 53/~m silt subfractions, which are inferred to be mainly transported by currents and sea ice, respectively. Down core variability of these two fractions may indicate changes in ice drift and current strength. In accordance with previous studies in the central Arctic Ocean, the average sedimentation rate in core B84A is about 0.4 cm.ka-1. Compared with the relatively high sedimentation rates on the margins, sedimentation in the central Arctic Ocean is limited by sea ice cover and the correspondingly low bioproductivity, as well as the long distance from source regions of terrigenous sediment.展开更多
The late Quaternary ice rafted detritus (IRD) events in the Chukchi Basin, western Arctic Ocean are indications of the provenance of the coarser detritus and ice export events, and also document the evolutionary histo...The late Quaternary ice rafted detritus (IRD) events in the Chukchi Basin, western Arctic Ocean are indications of the provenance of the coarser detritus and ice export events, and also document the evolutionary histories of Beaufort Gyre and the North American Ice Sheet (NAIS). The sediment of core M03 from the Chukchi Basin was selected to study the regional response to the ice export events and the NAIS variability. The stratigraphic framework of M03 was established by a combination of lithological features and downcore color change cycles, AMS14C dating with foraminifera abundance and IRD events. The core was also compared with the adjacent core NWR 5 from the Northwind Ridge area. The core extends back to Marine Isotope Stage (MIS) 7. A sedimentary hiatus of 10―20 ka might occur between 16 to 20 cm core depth. Seven IRD events are distinguished from the studied core and are presented during the early MIS 1, MIS 3, MIS 5 and late MIS 7. These IRD are transported by sea ice and icebergs, which were exported to the Beaufort Sea from the M'Clure Strait Ice Stream, Canadian Arctic Archipelago, and brought to the Chukchi Basin by the Beaufort Gyre.展开更多
基金The National Natural Science Foundation of China under contract Nos 41030859,41211120173,CHINARE2015-03-02 and IC201105the Geological Investigation Project of China Geological Survey Nos 12120113006200 and 1212011120044
文摘Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope Stage (MIS) 3 by a combination of Accelerator Mass Spectrometric (AMS) carbon-14 dating and regional core correlation. A total of five prominent ice-rafted detritus (IRD) events were recognized in MIS 2 and MIS 3. The IRD sources in MIS 3 are originated from vast carbonate rock outcrops of the Canadian Arctic Archipelago and clastic quartz in MIS 2 may have a Eurasian origin. Mostδ18O andδ13C values of Neogloboquadrina pachyderma (sinistral) (Nps) in Core 08P23 are lighter than the average values of surface sediments. The lighterδ18O andδ13C values of Nps in the two brown layers in MIS 1 and MIS 3 were resulted from meltwater events; and those in the gray layers in MIS 3 were caused by the enhanced sea ice formation. Theδ18O values varied inversely withδ13C in MIS 2 indicate that the study area was covered by thick sea ice or ice sheet with low temperature and little meltwater, which prevented the biological productivity and sea-atmosphere exchange, as well as water mass ventilation. The covaried light values ofδ18O andδ13C in MIS 1 and MIS 3 were resulted from meltwater and/or brine injection.
基金funded by the National Basic Research Program of China(Grant no. G2007CB815903)the National Natural Science Foundation of China (Grant nos.41030859, 40321603)+2 种基金the China Program for International Polar Year 2007-2008the China Geological Survey project (Grant no. H[2011]01-14-04)part of the project "Third Chinese National Arctic Research Expedition" (the 3rd CHINARE-Arctic in 2008)supported by the Ministry of Finance of China
文摘Terrigenous components in sediment core B84A from the Alpha Ridge, Western Arctic Ocean, have been investigated to reconstruct Mid to Late Quaternary variations in sedimentation, provenance, and related climate changes. The core stratigraphy, evaluated by a combination of variations in Mn content, color cycles, foraminiferal abundance, and lithological correlation, extends back to estimated Marine Isotope Stage 12. Twelve Ice Rafted Detritus (IRD, 〉250 ttm) events were identified and interpreted to mostly occur during deglaciation. The Canadian Arctic, which was covered by ice sheets during glacial periods, is suggested to be the major source region. The IRD events likely indicate the collapses of ice sheets, possibly in response to abrupt climate changes. Grain size analysis of B84A indicates sedimentologically sensitive components in core B84A in the 4 9 #m and 19 53/~m silt subfractions, which are inferred to be mainly transported by currents and sea ice, respectively. Down core variability of these two fractions may indicate changes in ice drift and current strength. In accordance with previous studies in the central Arctic Ocean, the average sedimentation rate in core B84A is about 0.4 cm.ka-1. Compared with the relatively high sedimentation rates on the margins, sedimentation in the central Arctic Ocean is limited by sea ice cover and the correspondingly low bioproductivity, as well as the long distance from source regions of terrigenous sediment.
基金part of the project "Second Chinese National Arctic Research Expedition" (or CHINARE-2003) supported by the Ministry of Finance of China and organized by the Chinese Arctic and supported by the National Basic Research Program of China (Grant No. G2007CB815903)National Natural Science Foundation of China (Grant Nos. 40321603 and 40676030)Chinese IPY Program (Grant No. 2007―2009)
文摘The late Quaternary ice rafted detritus (IRD) events in the Chukchi Basin, western Arctic Ocean are indications of the provenance of the coarser detritus and ice export events, and also document the evolutionary histories of Beaufort Gyre and the North American Ice Sheet (NAIS). The sediment of core M03 from the Chukchi Basin was selected to study the regional response to the ice export events and the NAIS variability. The stratigraphic framework of M03 was established by a combination of lithological features and downcore color change cycles, AMS14C dating with foraminifera abundance and IRD events. The core was also compared with the adjacent core NWR 5 from the Northwind Ridge area. The core extends back to Marine Isotope Stage (MIS) 7. A sedimentary hiatus of 10―20 ka might occur between 16 to 20 cm core depth. Seven IRD events are distinguished from the studied core and are presented during the early MIS 1, MIS 3, MIS 5 and late MIS 7. These IRD are transported by sea ice and icebergs, which were exported to the Beaufort Sea from the M'Clure Strait Ice Stream, Canadian Arctic Archipelago, and brought to the Chukchi Basin by the Beaufort Gyre.