Wild-type (Zhonghua 11) and mutant rice (Oryza sativa L.) plants were used to investigate the effect of cadmium (Cd) application on biomass production, to characterize the influx of Cd from roots to shoots, and ...Wild-type (Zhonghua 11) and mutant rice (Oryza sativa L.) plants were used to investigate the effect of cadmium (Cd) application on biomass production, to characterize the influx of Cd from roots to shoots, and to determine the form, content, and subcellular distribution of Cd in the roots, leaf sheaths, and leaves of the rice plants. Seedlings were cultivated in a nutrient solution and were treated with 0.5 mmol L^-1 of Cd^2+ for 14 d. The sensitivity of rice plants to Cd toxicity was tested by studying the changes in biomass production and by observing the onset of toxicity symptoms in the plants. Both the wild-type and mutant rice plants developed symptoms of Cd stress. In addition, Cd application significantly (P ≤ 0.01) decreased dry matter production of roots, leaf sheaths, and leaves of both types, especially the mutant. The Cd content in roots of the mutant was significantly (P ≤0.05) higher than that of the wild-type rice. However, there was no significant difference in the Cd content of roots, leaf sheaths, and leaves between the wild-type and mutant rice. Most of the Cd was bound to the cell wall of the roots, leaf sheaths, and leaves, and the mutant had greater Cd content in cell organelles than the wild type. The uneven subcellular distribution could be responsible for the Cd sensitivity of the mutant rice. Furthermore, different chemical forms of Cd were found to occur in the roots, leaf sheaths, and leaves of both types of rice plants. Ethanol-, water-, and NaCl-extractable Cd had greater toxicity than the other forms of Cd and induced stunted growth and chlorosis in the plants. The high Cd content of the toxic forms of Cd in the cell organelles could seriously damage the cells and the metabolic processes in mutant rice plants.展开更多
The 'double T-DNA' binary vector p13HSR which harbored two independent T-DNAs, containing hygromycin phosphotransferase gene (hpf) in one T-DNA region and three target genes (hLF, SB401, RZ10) in another T-DNA r...The 'double T-DNA' binary vector p13HSR which harbored two independent T-DNAs, containing hygromycin phosphotransferase gene (hpf) in one T-DNA region and three target genes (hLF, SB401, RZ10) in another T-DNA region, was used to generate selectable marker-free transgenic rice by Agrobacterium-mediated transformation. The regenerated plants with both the three target genes and the selectable marker gene hpt were selected for anther culture. RT-PCR analysis indicated that target genes were inserted in rice genomic DNA and successfully transcribed. It took only one year to obtain double haploid selectable marker-free transgenic plants containing the three target genes with co-transformation followed by anther culture technique, and the efficiency was 12.2%. It was also noted that one or two target genes derived from the binary vector were lost in some transgenic rice plants.展开更多
Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L. subsp, japonica cv. Aic...Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L. subsp, japonica cv. Aichi ashahi by Agrobacterium mediated transformation system. PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in To generation, respectively. RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation, and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants. Four Np3 and Np5 transgenic lines in T1 generation were inoculated with Xanthomonas oryzae pv. oryzae strain CR4, and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4. The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2, Zhe 173 and OS-225. It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.展开更多
To investigate the low temperature on germination capacity (LTG) a double haploid rice (DH) population with 198 lines derived from anther culture of F1 hybrid with indica line Zhenshan 97B and a perennial japonica...To investigate the low temperature on germination capacity (LTG) a double haploid rice (DH) population with 198 lines derived from anther culture of F1 hybrid with indica line Zhenshan 97B and a perennial japonica line AAV002863 was used to construct a linkage map with 140 SSR markers, The germination rate in Zhenshan 97B and AAV002863 was 79,7% and 30,1%, while in DH population it ranged from 0 to 100% at 15℃ after 6 days, Quantitative trait loci (QTLs) controlling low temperature germinability were identified on chromosomes 3 and 10. The percentage of observed phenotypic variance attributed to qLTG-3 and qLTG-10 was 12.6% and 12.9%, respectively. Allele from Zhenshan 97B increased the LTG at qLTG-3 region, while allele from AAV002863 increased the LTG at qLTG-IO region. One pair of epistatic interaction was detected between loci on chromosomes 3 and 10. The main-effect of QTL on chromosome 10 was also involved in epistatic interaction.展开更多
Panicles of an indica rice line TM7-5 were subjected to radiation with 137^Cs gamma rays at 0 (control), 5, 10, 15 and 20 Gy respectively, and then its anthers were cultured. There were slight differences among the ...Panicles of an indica rice line TM7-5 were subjected to radiation with 137^Cs gamma rays at 0 (control), 5, 10, 15 and 20 Gy respectively, and then its anthers were cultured. There were slight differences among the treatments in peak emerging time of callus initiation, from 38 to 44 days after inoculation (DAI) as well as the frequency of callus initiation (2.3-3.5%). About two thirds calli were induced before 44 DAI, and calli derived beyond 60 DAI lost the regeneration ability. Green plant regeneration frequency was significantly stimulated from two- to three-fold by irradiation of the 1370S gamma rays compared with the control, and the maximum was 22,81% (15 Gy). The culture ability based on callus initiation and green plantlet regeneration was 0.19% for the control while it was over 0.45% for all the irradiated treatments, and the maximum was 0,59% for 15 Gy treatment. The advantages of panicle irradiation before anther culture and the potential application in rice anther culture, especially for recalcitrant indica rice, were discussed.展开更多
基金the National Natural Science Foundation of China (No30671255)the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period (No2006BAK02A18)the National Basic Research Program (973) of China (No2002CB410804)
文摘Wild-type (Zhonghua 11) and mutant rice (Oryza sativa L.) plants were used to investigate the effect of cadmium (Cd) application on biomass production, to characterize the influx of Cd from roots to shoots, and to determine the form, content, and subcellular distribution of Cd in the roots, leaf sheaths, and leaves of the rice plants. Seedlings were cultivated in a nutrient solution and were treated with 0.5 mmol L^-1 of Cd^2+ for 14 d. The sensitivity of rice plants to Cd toxicity was tested by studying the changes in biomass production and by observing the onset of toxicity symptoms in the plants. Both the wild-type and mutant rice plants developed symptoms of Cd stress. In addition, Cd application significantly (P ≤ 0.01) decreased dry matter production of roots, leaf sheaths, and leaves of both types, especially the mutant. The Cd content in roots of the mutant was significantly (P ≤0.05) higher than that of the wild-type rice. However, there was no significant difference in the Cd content of roots, leaf sheaths, and leaves between the wild-type and mutant rice. Most of the Cd was bound to the cell wall of the roots, leaf sheaths, and leaves, and the mutant had greater Cd content in cell organelles than the wild type. The uneven subcellular distribution could be responsible for the Cd sensitivity of the mutant rice. Furthermore, different chemical forms of Cd were found to occur in the roots, leaf sheaths, and leaves of both types of rice plants. Ethanol-, water-, and NaCl-extractable Cd had greater toxicity than the other forms of Cd and induced stunted growth and chlorosis in the plants. The high Cd content of the toxic forms of Cd in the cell organelles could seriously damage the cells and the metabolic processes in mutant rice plants.
文摘The 'double T-DNA' binary vector p13HSR which harbored two independent T-DNAs, containing hygromycin phosphotransferase gene (hpf) in one T-DNA region and three target genes (hLF, SB401, RZ10) in another T-DNA region, was used to generate selectable marker-free transgenic rice by Agrobacterium-mediated transformation. The regenerated plants with both the three target genes and the selectable marker gene hpt were selected for anther culture. RT-PCR analysis indicated that target genes were inserted in rice genomic DNA and successfully transcribed. It took only one year to obtain double haploid selectable marker-free transgenic plants containing the three target genes with co-transformation followed by anther culture technique, and the efficiency was 12.2%. It was also noted that one or two target genes derived from the binary vector were lost in some transgenic rice plants.
基金supported by the Important National Science & Technology Specific Projects for Breeding New Transgenic Varieties in China (Grant No. 2008ZX08010-004)
文摘Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L. subsp, japonica cv. Aichi ashahi by Agrobacterium mediated transformation system. PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in To generation, respectively. RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation, and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants. Four Np3 and Np5 transgenic lines in T1 generation were inoculated with Xanthomonas oryzae pv. oryzae strain CR4, and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4. The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2, Zhe 173 and OS-225. It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.
文摘To investigate the low temperature on germination capacity (LTG) a double haploid rice (DH) population with 198 lines derived from anther culture of F1 hybrid with indica line Zhenshan 97B and a perennial japonica line AAV002863 was used to construct a linkage map with 140 SSR markers, The germination rate in Zhenshan 97B and AAV002863 was 79,7% and 30,1%, while in DH population it ranged from 0 to 100% at 15℃ after 6 days, Quantitative trait loci (QTLs) controlling low temperature germinability were identified on chromosomes 3 and 10. The percentage of observed phenotypic variance attributed to qLTG-3 and qLTG-10 was 12.6% and 12.9%, respectively. Allele from Zhenshan 97B increased the LTG at qLTG-3 region, while allele from AAV002863 increased the LTG at qLTG-IO region. One pair of epistatic interaction was detected between loci on chromosomes 3 and 10. The main-effect of QTL on chromosome 10 was also involved in epistatic interaction.
文摘Panicles of an indica rice line TM7-5 were subjected to radiation with 137^Cs gamma rays at 0 (control), 5, 10, 15 and 20 Gy respectively, and then its anthers were cultured. There were slight differences among the treatments in peak emerging time of callus initiation, from 38 to 44 days after inoculation (DAI) as well as the frequency of callus initiation (2.3-3.5%). About two thirds calli were induced before 44 DAI, and calli derived beyond 60 DAI lost the regeneration ability. Green plant regeneration frequency was significantly stimulated from two- to three-fold by irradiation of the 1370S gamma rays compared with the control, and the maximum was 22,81% (15 Gy). The culture ability based on callus initiation and green plantlet regeneration was 0.19% for the control while it was over 0.45% for all the irradiated treatments, and the maximum was 0,59% for 15 Gy treatment. The advantages of panicle irradiation before anther culture and the potential application in rice anther culture, especially for recalcitrant indica rice, were discussed.