基于压缩感知理论的随机步进频率高频雷达(Random Stepped Frequency High Frequency Radar,RSF HFR)稀疏重构性能受信号参数影响较大。针对上述问题,本文首先构建了RSF HFR二维稀疏重构模型。其次,利用感知矩阵互相关性能(最大互相关...基于压缩感知理论的随机步进频率高频雷达(Random Stepped Frequency High Frequency Radar,RSF HFR)稀疏重构性能受信号参数影响较大。针对上述问题,本文首先构建了RSF HFR二维稀疏重构模型。其次,利用感知矩阵互相关性能(最大互相关系数、平均互相关系数)对影响RSF HFR重构性能的因素进行分析,得出在相同合成带宽条件下,采用子脉冲随机步进方式、增加发射子脉冲个数的方式可以得到更好的RSF HFR二维稀疏重构性能的结论。最后,利用仿真实验对上述结论进行了验证。本文的研究为RSF HFR的波形设计提供了方向,具有重要的实际应用价值。展开更多
Let X be a non-elementary Riemann surface of type(g,n),where g is the number of genus and n is the number of punctures with 3g-3+n>1.Let T(X)be the Teichmller space of X.By constructing a certain subset E of T(X),w...Let X be a non-elementary Riemann surface of type(g,n),where g is the number of genus and n is the number of punctures with 3g-3+n>1.Let T(X)be the Teichmller space of X.By constructing a certain subset E of T(X),we show that the convex hull of E with respect to the Teichmller metric,the Carathodory metric and the Weil-Petersson metric is not in any thick part of the Teichmler space,respectively.This implies that convex hulls of thick part of Teichmller space with respect to these metrics are not always in thick part of Teichmller space,as well as the facts that thick part of Teichmller space is not always convex with respect to these metrics.展开更多
文摘基于压缩感知理论的随机步进频率高频雷达(Random Stepped Frequency High Frequency Radar,RSF HFR)稀疏重构性能受信号参数影响较大。针对上述问题,本文首先构建了RSF HFR二维稀疏重构模型。其次,利用感知矩阵互相关性能(最大互相关系数、平均互相关系数)对影响RSF HFR重构性能的因素进行分析,得出在相同合成带宽条件下,采用子脉冲随机步进方式、增加发射子脉冲个数的方式可以得到更好的RSF HFR二维稀疏重构性能的结论。最后,利用仿真实验对上述结论进行了验证。本文的研究为RSF HFR的波形设计提供了方向,具有重要的实际应用价值。
基金supported by National Natural Science Foundation of China(Grant Nos.11271378,11071179 and 10871211)
文摘Let X be a non-elementary Riemann surface of type(g,n),where g is the number of genus and n is the number of punctures with 3g-3+n>1.Let T(X)be the Teichmller space of X.By constructing a certain subset E of T(X),we show that the convex hull of E with respect to the Teichmller metric,the Carathodory metric and the Weil-Petersson metric is not in any thick part of the Teichmler space,respectively.This implies that convex hulls of thick part of Teichmller space with respect to these metrics are not always in thick part of Teichmller space,as well as the facts that thick part of Teichmller space is not always convex with respect to these metrics.