Patterned SiC and SiCN microstructures were successfully fabricated on the silicon substrates by using polydimethylsiloxane (PDMS) elastometric stamp as template, polycarbosilane (PCS) and polysilazane (PSZ) as precer...Patterned SiC and SiCN microstructures were successfully fabricated on the silicon substrates by using polydimethylsiloxane (PDMS) elastometric stamp as template, polycarbosilane (PCS) and polysilazane (PSZ) as preceramic polymers. The preparing process was followed by precursor infiltration, the curing of the precursor, demolding of the template and pyrolysis of the cured preceramic polymer pattern. It shows that the dimen- sions of the ceramic patterns can be tailored by using the PDMS molds with different di- mensions. The produced ceramic microstructures can be potentially applied in high tem- perature and high pressure environments due to the advanced properties of the SiC and SiCN ceramics.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59972042) Korea National Research Laboratory Program (Grant No. M10400000061-04J0000-06110)the Doctor Innovation Fund of the National University of Defense Technogy in China(2001-2004).
文摘Patterned SiC and SiCN microstructures were successfully fabricated on the silicon substrates by using polydimethylsiloxane (PDMS) elastometric stamp as template, polycarbosilane (PCS) and polysilazane (PSZ) as preceramic polymers. The preparing process was followed by precursor infiltration, the curing of the precursor, demolding of the template and pyrolysis of the cured preceramic polymer pattern. It shows that the dimen- sions of the ceramic patterns can be tailored by using the PDMS molds with different di- mensions. The produced ceramic microstructures can be potentially applied in high tem- perature and high pressure environments due to the advanced properties of the SiC and SiCN ceramics.