In plants, triose phosphate/phosphate translocator (TPT) is the first regulation point forpartitioning of photosynthate between source and sink. Studies on the characteristic of TPT and itsregulation on the distributi...In plants, triose phosphate/phosphate translocator (TPT) is the first regulation point forpartitioning of photosynthate between source and sink. Studies on the characteristic of TPT and itsregulation on the distribution of assimilates are critical for improving the utilization rate of photosyntheticassimilates. Chloroplasts with intactness of more than 91% and high purity were isolated from wheat( Triticurn aestivurn L. cv. Jing 411) leaves. Analysis of SDS-PAGE and labeling with an irreversible specificinhibitor, [H3]2^-DIDS (4, 4'-diisothiocyano-2, 2'-stilbenedisulfonate, DIDS) demonstrated that wheat TPTwas a chloroplast membrane protein with a 35 kD molecular weight, which comprised about 15% of the totalmembrane proteins of chloroplasts. Western blotting analysis showed that wheat TPT is uniquelydistributed in the envelope membrane of chloroplasts, but not detected in the membranes of vacuoles andmitochondria. The silicone-oil-layer centrifugation system was employed to study the kinetic properties ofTPT. The results showed that the maximal transport activity of TPT was the highest for dihydroxyacetonephosphate (DHAP)/inorganic phosphate (Pi), then for phosphoenolpyruvate (PEP)/Pi and glucose-6-phosphate (G6P)/Pi. The Km value of TPT was the lowest for DHAP, followed by Pi, PEP and G6P,therefore the most preferred substrate of TPT is DHAP. The transport of wheat TPT to DHAP was stronglyinhibited by DIDS with a degree of 95%. Inhibition of TPT transport activity led to an obvious accumulationof starch in chloroplasts, therefore the TPT protein of wheat controls the export of TP out of chloroplastsinto cytosol. Except for the need of participating in the Calvin cycle, the ratio of TP exported out ofchloroplast to the one used for synthesizing starch was at least 93.6:6.4. The TPT protein from wheat hasmuch high transport efficiency, which plays an important role in the regulation of the distribution ofassimilates in wheat chloroplasts.展开更多
文摘In plants, triose phosphate/phosphate translocator (TPT) is the first regulation point forpartitioning of photosynthate between source and sink. Studies on the characteristic of TPT and itsregulation on the distribution of assimilates are critical for improving the utilization rate of photosyntheticassimilates. Chloroplasts with intactness of more than 91% and high purity were isolated from wheat( Triticurn aestivurn L. cv. Jing 411) leaves. Analysis of SDS-PAGE and labeling with an irreversible specificinhibitor, [H3]2^-DIDS (4, 4'-diisothiocyano-2, 2'-stilbenedisulfonate, DIDS) demonstrated that wheat TPTwas a chloroplast membrane protein with a 35 kD molecular weight, which comprised about 15% of the totalmembrane proteins of chloroplasts. Western blotting analysis showed that wheat TPT is uniquelydistributed in the envelope membrane of chloroplasts, but not detected in the membranes of vacuoles andmitochondria. The silicone-oil-layer centrifugation system was employed to study the kinetic properties ofTPT. The results showed that the maximal transport activity of TPT was the highest for dihydroxyacetonephosphate (DHAP)/inorganic phosphate (Pi), then for phosphoenolpyruvate (PEP)/Pi and glucose-6-phosphate (G6P)/Pi. The Km value of TPT was the lowest for DHAP, followed by Pi, PEP and G6P,therefore the most preferred substrate of TPT is DHAP. The transport of wheat TPT to DHAP was stronglyinhibited by DIDS with a degree of 95%. Inhibition of TPT transport activity led to an obvious accumulationof starch in chloroplasts, therefore the TPT protein of wheat controls the export of TP out of chloroplastsinto cytosol. Except for the need of participating in the Calvin cycle, the ratio of TP exported out ofchloroplast to the one used for synthesizing starch was at least 93.6:6.4. The TPT protein from wheat hasmuch high transport efficiency, which plays an important role in the regulation of the distribution ofassimilates in wheat chloroplasts.