Cu doped Mg(OH)_(2) nanoparticles were synthesized with varying concentrations from 0 to 10%by a chemical synthesis technique of coprecipitation.X-rays diffraction (XRD) of the samples confirms that all the samples ac...Cu doped Mg(OH)_(2) nanoparticles were synthesized with varying concentrations from 0 to 10%by a chemical synthesis technique of coprecipitation.X-rays diffraction (XRD) of the samples confirms that all the samples acquire the hexagonal crystal structure.XRD results indicated the solubility limit of dopant in the host material and the secondary phase of CuO was observed beyond 3%Cu doping in Mg(OH)_(2).The reduction in the size of nanoparticles was observed from 166 to 103 nm for Mg(OH)_(2) and 10% Cu doped Mg(OH)_(2)samples,respectively.The shift in absorption spectra exhibited the systematical enhancement in optical bandgap from 5.25 to 6.085 eV.A good correlation was observed between the bandgap energy and crystallite size of the nanocrystals which confirmed the size induced effect in the nanoparticles.The transformation in the sample morphology was observed from irregular spherical particles to sepals like shapes with increasing the Cu concentration in the host material.The energy dispersive X-Ray (EDX) analysis confirmed the purity of mass percentage composition of the elements present in the samples.展开更多
Quantum theory with conjecture of fractional charge quantization, eigenfunctions for fractional charge quantization, fractional Fourier transform, Hermite function for fractional charge quantization, and eigenfunction...Quantum theory with conjecture of fractional charge quantization, eigenfunctions for fractional charge quantization, fractional Fourier transform, Hermite function for fractional charge quantization, and eigenfunction for a twisted and twigged electron quanta is developed and applied to resistivity, dielectricity, giant magneto resistance, Hall effect and conductance. Our theoretical relationship for quantum measurements is in good conformity and in agreement with most of the experimental results. These relationships will pave a new approach to quantum physics for deciphering measurements on single quantum particles without destroying them. Our results are in agreement with 2012 Physics Nobel Prize winning Scientists, Serge Haroche and David J. Wineland.展开更多
文摘Cu doped Mg(OH)_(2) nanoparticles were synthesized with varying concentrations from 0 to 10%by a chemical synthesis technique of coprecipitation.X-rays diffraction (XRD) of the samples confirms that all the samples acquire the hexagonal crystal structure.XRD results indicated the solubility limit of dopant in the host material and the secondary phase of CuO was observed beyond 3%Cu doping in Mg(OH)_(2).The reduction in the size of nanoparticles was observed from 166 to 103 nm for Mg(OH)_(2) and 10% Cu doped Mg(OH)_(2)samples,respectively.The shift in absorption spectra exhibited the systematical enhancement in optical bandgap from 5.25 to 6.085 eV.A good correlation was observed between the bandgap energy and crystallite size of the nanocrystals which confirmed the size induced effect in the nanoparticles.The transformation in the sample morphology was observed from irregular spherical particles to sepals like shapes with increasing the Cu concentration in the host material.The energy dispersive X-Ray (EDX) analysis confirmed the purity of mass percentage composition of the elements present in the samples.
文摘Quantum theory with conjecture of fractional charge quantization, eigenfunctions for fractional charge quantization, fractional Fourier transform, Hermite function for fractional charge quantization, and eigenfunction for a twisted and twigged electron quanta is developed and applied to resistivity, dielectricity, giant magneto resistance, Hall effect and conductance. Our theoretical relationship for quantum measurements is in good conformity and in agreement with most of the experimental results. These relationships will pave a new approach to quantum physics for deciphering measurements on single quantum particles without destroying them. Our results are in agreement with 2012 Physics Nobel Prize winning Scientists, Serge Haroche and David J. Wineland.