The highest resolution of images of soft matter and biological materials is ultimately limited by modification of the structure,induced by the necessarily high energy of short-wavelength radiation.Imaging the inelasti...The highest resolution of images of soft matter and biological materials is ultimately limited by modification of the structure,induced by the necessarily high energy of short-wavelength radiation.Imaging the inelastically scattered X-rays at a photon energy of 60 keV(0.02 nm wavelength)offers greater signal per energy transferred to the sample than coherent-scattering techniques such as phase-contrast microscopy and projection holography.We present images of dried,unstained,and unfixed biological objects obtained by scanning Compton X-ray microscopy,at a resolution of about 70 nm.This microscope was realised using novel wedged multilayer Laue lenses that were fabricated to sub-ångström precision,a new wavefront measurement scheme for hard X rays,and efficient pixel-array detectors.The doses required to form these images were as little as 0.02%of the tolerable dose and 0.05%of that needed for phase-contrast imaging at similar resolution using 17 keV photon energy.The images obtained provide a quantitative map of the projected mass density in the sample,as confirmed by imaging a silicon wedge.Based on these results,we find that it should be possible to obtain radiation damage-free images of biological samples at a resolution below 10 nm.展开更多
Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays.With a new manufacturing technique that we introduced,it is possible to fabricate lenses of sufficiently high numerical apert...Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays.With a new manufacturing technique that we introduced,it is possible to fabricate lenses of sufficiently high numerical aperture(NA)to achieve focal spot sizes below 10 nm.The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA.This poses a challenge to both the accuracy of the deposition process and the control of the materials properties,which often vary with layer thickness.We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses.Using a pair of multilayer Laue lenses(MLLs)fabricated from this system,we achieved a two-dimensional focus of 8.4×6.8 nm2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm.The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications.An error analysis indicates the possibility of achieving 1 nm focusing.展开更多
基金We thank Martin Domaracky,Florian Laucks,Jerome Carnis(CFEL)for support with controls and data acquisition software,Sabrina Bolmer,Harumi Nakatsutsumi,Tjark Delmas(CFEL)for technical work,Christian Hamm(AWI,Bremerhaven,Germany)for the diatom sample,Klara Gregorič(Univ.of Ljubljana,Slovenia)and Iosifina Sarrou for preparing the spirulina sample,and Miriam Barthelmeß(CFEL)for the silicon sample.We also thank X-Spectrum(Hamburg,Germany)for support with CdTe detectors.We acknowledge support by DESY(Hamburg,Germany),a member of the Helmholtz Association HGF and by the Cluster of Excellence‘Advanced Imaging of Matter’of the Deutsche Forschungsgemeinschaft(DFG)-EXC 2056-project ID 390715994.
文摘The highest resolution of images of soft matter and biological materials is ultimately limited by modification of the structure,induced by the necessarily high energy of short-wavelength radiation.Imaging the inelastically scattered X-rays at a photon energy of 60 keV(0.02 nm wavelength)offers greater signal per energy transferred to the sample than coherent-scattering techniques such as phase-contrast microscopy and projection holography.We present images of dried,unstained,and unfixed biological objects obtained by scanning Compton X-ray microscopy,at a resolution of about 70 nm.This microscope was realised using novel wedged multilayer Laue lenses that were fabricated to sub-ångström precision,a new wavefront measurement scheme for hard X rays,and efficient pixel-array detectors.The doses required to form these images were as little as 0.02%of the tolerable dose and 0.05%of that needed for phase-contrast imaging at similar resolution using 17 keV photon energy.The images obtained provide a quantitative map of the projected mass density in the sample,as confirmed by imaging a silicon wedge.Based on these results,we find that it should be possible to obtain radiation damage-free images of biological samples at a resolution below 10 nm.
基金supported by Joachim Herz Stiftungthe Helmholtz Association through program-oriented funds.
文摘Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays.With a new manufacturing technique that we introduced,it is possible to fabricate lenses of sufficiently high numerical aperture(NA)to achieve focal spot sizes below 10 nm.The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA.This poses a challenge to both the accuracy of the deposition process and the control of the materials properties,which often vary with layer thickness.We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses.Using a pair of multilayer Laue lenses(MLLs)fabricated from this system,we achieved a two-dimensional focus of 8.4×6.8 nm2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm.The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications.An error analysis indicates the possibility of achieving 1 nm focusing.