With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integ...With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integrated terrestrial-satellite networks are integrated into ultra dense satellite-enabled 6G networks architecture.Then the subchannel and power allocation schemes for the downlink of the ultra dense satellite-enabled 6G heterogeneous networks are introduced.Satellite mobile edge computing(SMEC)with edge caching in three-layer heterogeneous networks serves to reduce the link traffic of networks.Furthermore,a scheme for interference management is presented,involving quality-of-service(QoS)and co-tier/cross-tier interference constraints.The simulation results show that the proposed schemes can significantly increase the total capacity of ultra dense satellite-enabled 6G heterogeneous networks.展开更多
We are developing a novel technology for the next generation optical access network. The proposed archi-tecture provides FTTX high bandwidth which enables to give out 10Gbit/s per end-user. Increasing the subscribers ...We are developing a novel technology for the next generation optical access network. The proposed archi-tecture provides FTTX high bandwidth which enables to give out 10Gbit/s per end-user. Increasing the subscribers in the future will cause massive congestion in the data transferred along the optical network. Our solution is using the wavelength division multiplexing PON (CWDM-PON) technology to achieve high bandwidth and enormous data transmission at the network access. Physical layer modifications are used in our model to provide satisfactory solution for the bandwidth needs. Thus high data rates can be achieved throughout the network using low cost technologies. Framework estimations are evaluated to prove the intended model success and reliability. Our argument that: this modification will submit a wide bandwidth suitable for the future Internet.展开更多
基金supported in part by the National Key R&D Program of China(2020YFB1806103)the National Natural Science Foundation of China under Grant 62225103 and U22B2003+1 种基金Beijing Natural Science Foundation(L212004)China University Industry-University-Research Collaborative Innovation Fund(2021FNA05001).
文摘With the evolution of the sixth generation(6G)mobile communication technology,ample attention has gone to the integrated terrestrial-satellite networks.This paper notes that four typical application scenarios of integrated terrestrial-satellite networks are integrated into ultra dense satellite-enabled 6G networks architecture.Then the subchannel and power allocation schemes for the downlink of the ultra dense satellite-enabled 6G heterogeneous networks are introduced.Satellite mobile edge computing(SMEC)with edge caching in three-layer heterogeneous networks serves to reduce the link traffic of networks.Furthermore,a scheme for interference management is presented,involving quality-of-service(QoS)and co-tier/cross-tier interference constraints.The simulation results show that the proposed schemes can significantly increase the total capacity of ultra dense satellite-enabled 6G heterogeneous networks.
文摘We are developing a novel technology for the next generation optical access network. The proposed archi-tecture provides FTTX high bandwidth which enables to give out 10Gbit/s per end-user. Increasing the subscribers in the future will cause massive congestion in the data transferred along the optical network. Our solution is using the wavelength division multiplexing PON (CWDM-PON) technology to achieve high bandwidth and enormous data transmission at the network access. Physical layer modifications are used in our model to provide satisfactory solution for the bandwidth needs. Thus high data rates can be achieved throughout the network using low cost technologies. Framework estimations are evaluated to prove the intended model success and reliability. Our argument that: this modification will submit a wide bandwidth suitable for the future Internet.