High power supercontinuum(SC) is generated by focusing 800 nm and 400 nm femtosecond laser pulses in fused silica with a microlens array. It is found that the spectrum of the SC is getting broader compared with the ca...High power supercontinuum(SC) is generated by focusing 800 nm and 400 nm femtosecond laser pulses in fused silica with a microlens array. It is found that the spectrum of the SC is getting broader compared with the case of a single laser pulse, and the spectral energy density between the two fundamental laser wavelengths is getting significantly higher by optimizing the phase matching angle of the BBO. It exceeds μJ/nm over 490 nm range which is from 380 nm to 870 nm,overcoming the disadvantage of relative lower power in the ranges far from the fundamental wavelength.展开更多
An intense supercontinuum(SC) in the near-ultraviolet range is generated from filamentation by focusing a 400-nm laser into fused silica with a microlens array(MLA). The spectrum of the SC is shown to be sensitive...An intense supercontinuum(SC) in the near-ultraviolet range is generated from filamentation by focusing a 400-nm laser into fused silica with a microlens array(MLA). The spectrum of the SC is shown to be sensitive to the distance between the MLA and fused silica. In our optimal conditions, the near-ultraviolet SC can cover a range of 350-600 nm,where a bandwidth of approximately 55 nm above the 1μJ/nm spectral energy density and 20 nm bandwidth with tens ofμJ/nm are achieved. In addition, the energy conversion efficiency of the 400 nm laser for SC generation is further analyzed.A maximum conversion efficiency of 66% is obtained when the entrance face of fused silica is set around the focus of the MLA.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074228,11774038,and 11474039)the Taishan Scholar Project of Shandong Province,China(Grant No.tsqn201812043)+1 种基金Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MA023)the Innovation Group of Jinan(Grant No.2020GXRC039)。
文摘High power supercontinuum(SC) is generated by focusing 800 nm and 400 nm femtosecond laser pulses in fused silica with a microlens array. It is found that the spectrum of the SC is getting broader compared with the case of a single laser pulse, and the spectral energy density between the two fundamental laser wavelengths is getting significantly higher by optimizing the phase matching angle of the BBO. It exceeds μJ/nm over 490 nm range which is from 380 nm to 870 nm,overcoming the disadvantage of relative lower power in the ranges far from the fundamental wavelength.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB922404)the National Natural Science Foundation of China(Grant Nos.11274053,11474039,11474040,and 11004240)+1 种基金the Science and Technology Department of Jilin Province,China(Grant No.20170519018JH)the Innovation Fund of Changchun University of Science and Technology,China(Grant No.XJJLG-2016-02)
文摘An intense supercontinuum(SC) in the near-ultraviolet range is generated from filamentation by focusing a 400-nm laser into fused silica with a microlens array(MLA). The spectrum of the SC is shown to be sensitive to the distance between the MLA and fused silica. In our optimal conditions, the near-ultraviolet SC can cover a range of 350-600 nm,where a bandwidth of approximately 55 nm above the 1μJ/nm spectral energy density and 20 nm bandwidth with tens ofμJ/nm are achieved. In addition, the energy conversion efficiency of the 400 nm laser for SC generation is further analyzed.A maximum conversion efficiency of 66% is obtained when the entrance face of fused silica is set around the focus of the MLA.