The δ18O and 8D values of gypsum crystallization water together with δ18O and 834S of sulfates were used as reliable techniques to study source of sulfur and mode of gypsum formation in selected central Iraqi soils....The δ18O and 8D values of gypsum crystallization water together with δ18O and 834S of sulfates were used as reliable techniques to study source of sulfur and mode of gypsum formation in selected central Iraqi soils. Six representative pedons on different geologic units were studied. The slope of 3.9 for δ18O and 8D plot of gypsum crystallization water showed that evaporation was the major process of gypsum deposition in the study area. The mean 834S value of +17.58 %0 showed that Cretaceous sea sulfate followed by Tertiary is the source of sulfur in studied soils. The heavier 834S value (+17.58 %0) of the study area compared to central Iran (+13.5 %) proved that gypsum in central Iraq soils has been formed in the later stage of evaporation and that Iraqi landforms were cut off from the Tethys seaway after central Iran was evolved.展开更多
文摘The δ18O and 8D values of gypsum crystallization water together with δ18O and 834S of sulfates were used as reliable techniques to study source of sulfur and mode of gypsum formation in selected central Iraqi soils. Six representative pedons on different geologic units were studied. The slope of 3.9 for δ18O and 8D plot of gypsum crystallization water showed that evaporation was the major process of gypsum deposition in the study area. The mean 834S value of +17.58 %0 showed that Cretaceous sea sulfate followed by Tertiary is the source of sulfur in studied soils. The heavier 834S value (+17.58 %0) of the study area compared to central Iran (+13.5 %) proved that gypsum in central Iraq soils has been formed in the later stage of evaporation and that Iraqi landforms were cut off from the Tethys seaway after central Iran was evolved.