This study has been performed to investigate the different parameters affecting on the production of high carbon ferromanganese in closed submerged arc furnace. The analysis of industrial data revealed that using mang...This study has been performed to investigate the different parameters affecting on the production of high carbon ferromanganese in closed submerged arc furnace. The analysis of industrial data revealed that using manganese ores with low Mn/Fe ratio necessitates higher amount of Mn-sinter in the charge. Using Mn-blend with higher Mn/Fe ratio reduces the coke consumption and this leads to reducing the electrodes consumption. The recovery of Mn ranges between 70 and 80 %. Much higher basic slag has slight effect on Mn- recovery. However, as slag basicity increases, the MnO- content of slag decreases. The manganese content of produced HCFeMn depends mainly on Mn/Fe ratio of Mn-blend. For obtaining HCFeMn alloy containing minimum 75%Mn, it is necessary to use Mn-blend with Mn/Fe ratio of higher than 6. A model for determination of the amount and composition of off-gases has been derived based on the chemical composition and material balance of the input raw materials and the produced alloy and slag. By using this model, the amount of off-gases was found to increase by increasing both Mn-blend and coke consumption.展开更多
文摘This study has been performed to investigate the different parameters affecting on the production of high carbon ferromanganese in closed submerged arc furnace. The analysis of industrial data revealed that using manganese ores with low Mn/Fe ratio necessitates higher amount of Mn-sinter in the charge. Using Mn-blend with higher Mn/Fe ratio reduces the coke consumption and this leads to reducing the electrodes consumption. The recovery of Mn ranges between 70 and 80 %. Much higher basic slag has slight effect on Mn- recovery. However, as slag basicity increases, the MnO- content of slag decreases. The manganese content of produced HCFeMn depends mainly on Mn/Fe ratio of Mn-blend. For obtaining HCFeMn alloy containing minimum 75%Mn, it is necessary to use Mn-blend with Mn/Fe ratio of higher than 6. A model for determination of the amount and composition of off-gases has been derived based on the chemical composition and material balance of the input raw materials and the produced alloy and slag. By using this model, the amount of off-gases was found to increase by increasing both Mn-blend and coke consumption.