In this paper, we present a micro-displacement sensor formed by the fixed and movable photonic crystal slabs. In this sensor, a waveguide was created by changing the radius of holes rather than removing them. At a pro...In this paper, we present a micro-displacement sensor formed by the fixed and movable photonic crystal slabs. In this sensor, a waveguide was created by changing the radius of holes rather than removing them. At a proper operating wavelength, the structure could be used as the micro-displacement sensor. The results revealed that the micro-displacement sensor had a sensitivity of 3.6 gm-1, the Q-factor was nearly 180, and the sensing range was 0.0 ~tm - 0.5 p.m. The properties of the micro-displacement sensor are also analyzed theoretically and verified using the finite-difference time-domain (FDTD) method carried out using the software (Rsoft).展开更多
文摘In this paper, we present a micro-displacement sensor formed by the fixed and movable photonic crystal slabs. In this sensor, a waveguide was created by changing the radius of holes rather than removing them. At a proper operating wavelength, the structure could be used as the micro-displacement sensor. The results revealed that the micro-displacement sensor had a sensitivity of 3.6 gm-1, the Q-factor was nearly 180, and the sensing range was 0.0 ~tm - 0.5 p.m. The properties of the micro-displacement sensor are also analyzed theoretically and verified using the finite-difference time-domain (FDTD) method carried out using the software (Rsoft).