Flavonoids are widely-distributed polyphenolic secondary metabolites with diverse biological activities in plants and benefit human health as protective dietary agents.They participate in plants' responses to hars...Flavonoids are widely-distributed polyphenolic secondary metabolites with diverse biological activities in plants and benefit human health as protective dietary agents.They participate in plants' responses to harsh environmental conditions and effectively regulate the cell differentiation and growth.In plants,the majority of their functions are attributed to their strong antioxidative properties.Similarly,dietary flavonoids protect the human body against free radicals which are associated with the development of cancer and atherosclerosis.Plants rich in polyphenols have been used to cure various diseases because of their antibacterial,antiviral,antifungal and anticancer properties.This review summarizes the up-to-date research trends and development on flavonoids and its derivatives,working mechanisms and potential functions and applications particularly in relation to plant protection and human health.Towards the end,notable concluding remarks with a close-up look at the future research directions have also been presented briefly.展开更多
Metal ions are essential for plant growth and development,but in excess,these compounds can become highly toxic.Plants have adopted numerous ways to maintain metal homeostasis while mitigating adverse effects of exces...Metal ions are essential for plant growth and development,but in excess,these compounds can become highly toxic.Plants have adopted numerous ways to maintain metal homeostasis while mitigating adverse effects of excess metal ions,including phytochelatin and the metal-chelating proteins metallothioneins(MTs).A family of cysteine(Cys)-rich,intracellular,and low-molecular-weight(4-8 kDa)MTs are proteins found in nearly all phyla including plants,animals,and fungi,and they have the potential to scavenge reactive oxygen species and detoxify toxic metals including copper,cadmium,and zinc.Based on their Cys numbers and residues,MTs have been categorized into three major classes.Class I MTs,which have highly conserved Cys residues,are found in animals,while class II MTs,with less conserved Cys residues,are present in plants and are classified further into four groups.Class III MTs include phytochelatins,a group of enzymatically synthesized Cys-rich proteins.The MTs have been an area of interest for five decades with extensive studies,which have been facilitated by advancements in instrumental techniques,protein science,and molecular biology tools.Here,we reviewed current advances in our understanding of the regulation of MT biosynthesis,their expression,and their potential roles in the alleviation of abiotic stresses(i.e.,drought,salinity,and oxidative stresses)and heavy metal detoxification and homeostasis.展开更多
基金supported by the National High-Tech R&D Program of China (863 Program,2013AA103000)the earmarked fund for Shanghai Modern Leaf Vegetable Industry Technology Research System,China (201802)
文摘Flavonoids are widely-distributed polyphenolic secondary metabolites with diverse biological activities in plants and benefit human health as protective dietary agents.They participate in plants' responses to harsh environmental conditions and effectively regulate the cell differentiation and growth.In plants,the majority of their functions are attributed to their strong antioxidative properties.Similarly,dietary flavonoids protect the human body against free radicals which are associated with the development of cancer and atherosclerosis.Plants rich in polyphenols have been used to cure various diseases because of their antibacterial,antiviral,antifungal and anticancer properties.This review summarizes the up-to-date research trends and development on flavonoids and its derivatives,working mechanisms and potential functions and applications particularly in relation to plant protection and human health.Towards the end,notable concluding remarks with a close-up look at the future research directions have also been presented briefly.
基金This research was supported by the National Key R&D Programe of China(No.2018 YFA 0900600).
文摘Metal ions are essential for plant growth and development,but in excess,these compounds can become highly toxic.Plants have adopted numerous ways to maintain metal homeostasis while mitigating adverse effects of excess metal ions,including phytochelatin and the metal-chelating proteins metallothioneins(MTs).A family of cysteine(Cys)-rich,intracellular,and low-molecular-weight(4-8 kDa)MTs are proteins found in nearly all phyla including plants,animals,and fungi,and they have the potential to scavenge reactive oxygen species and detoxify toxic metals including copper,cadmium,and zinc.Based on their Cys numbers and residues,MTs have been categorized into three major classes.Class I MTs,which have highly conserved Cys residues,are found in animals,while class II MTs,with less conserved Cys residues,are present in plants and are classified further into four groups.Class III MTs include phytochelatins,a group of enzymatically synthesized Cys-rich proteins.The MTs have been an area of interest for five decades with extensive studies,which have been facilitated by advancements in instrumental techniques,protein science,and molecular biology tools.Here,we reviewed current advances in our understanding of the regulation of MT biosynthesis,their expression,and their potential roles in the alleviation of abiotic stresses(i.e.,drought,salinity,and oxidative stresses)and heavy metal detoxification and homeostasis.