. In this work, we study the concept of the length function and some of its combinatorial properties for the class of extended affine root systems of type A1. We introduce a notion of root basis for these root systems.... In this work, we study the concept of the length function and some of its combinatorial properties for the class of extended affine root systems of type A1. We introduce a notion of root basis for these root systems, and using a unique expression of the elements of the Weyl group with respect to a set of generators for the Weyl group, we calculate the length function with respect to a very specific root basis.展开更多
We classify Jordan G-tori, where G is any torsion-free abelian group. Using the Zelmanov prime structure theorem, such a class divides into three types, the Hermitian type, the Clifford type, and the Albert type. We c...We classify Jordan G-tori, where G is any torsion-free abelian group. Using the Zelmanov prime structure theorem, such a class divides into three types, the Hermitian type, the Clifford type, and the Albert type. We concretely describe Jordan G-tori of each type.展开更多
文摘. In this work, we study the concept of the length function and some of its combinatorial properties for the class of extended affine root systems of type A1. We introduce a notion of root basis for these root systems, and using a unique expression of the elements of the Weyl group with respect to a set of generators for the Weyl group, we calculate the length function with respect to a very specific root basis.
文摘We classify Jordan G-tori, where G is any torsion-free abelian group. Using the Zelmanov prime structure theorem, such a class divides into three types, the Hermitian type, the Clifford type, and the Albert type. We concretely describe Jordan G-tori of each type.