期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multivariate optimization of high removal of lead(Ⅱ) using an efficient synthesized Ni-based metal-organic framework adsorbent 被引量:1
1
作者 saeideh dermanaki farahani Javad Zolgharnein 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期146-153,共8页
A new metal-organic framework(MOF) with the chemical formula of [Ni_(2) F_2(4,4'-Bipy)_(2)(H_(2) O)_(2)](VO_(3))_(2)·8 H_(2) O was introduced to adsorb Pb(Ⅱ) with the highest capacity.The sorbent was charact... A new metal-organic framework(MOF) with the chemical formula of [Ni_(2) F_2(4,4'-Bipy)_(2)(H_(2) O)_(2)](VO_(3))_(2)·8 H_(2) O was introduced to adsorb Pb(Ⅱ) with the highest capacity.The sorbent was characterized by thermogravimetric analysis(TGA),infrared spectroscopy(FT-IR),field-emission scanning electron microscopy(FESEM),energy-dispersive Xray(EDX),and elemental analysis.The optimum conditions were obtained by a face-centered central composite design(FCCD) as follows:adsorbent dosage(m)=1.2 mg, initial concentration of Pb(Ⅱ)(C)=390 mg·L^(-1),and pH=5.According to the Langmuir model(R~2=0.9999),the maximum monolayer uptake capacity of lead(Ⅱ) is 2400.7 mg·g^(-1),which is the highe st observed amount for lead(Ⅱ) adsorption.Neither of the old adsorbents for lead(Ⅱ)has the uptake capacity over 2000 mg·g^(-1).The model of pseudo-second-order describes well the process kinetics.The adsorption process of lead(Ⅱ) is independent of temperature changes.This compound can adsorb lead(Ⅱ) from tap water.In addition to introducing a new MOF with the highest uptake capacity for removal of Pb(Ⅱ) that is the outright novelty of this study,the concurrent modeling of both the removal percent(R) and the uptake capacity(q) is another important advantage.Because it achieves the more economical and favorable optimum conditions in comparison with the single optimization of each response. 展开更多
关键词 Adsorption Heavy metals KINETICS Lead(Ⅱ) Metal-organic framework Optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部