We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(...We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(v<sub>0</sub>))) - div(a(x,Dv) + F(v)) = f where the right hand side belongs to L<sup>1</sup>. The kernel k belongs to the large class of PC kernels. In particular, the case of fractional time derivatives of order α ∈ (0,1) is included. Assuming b nondecreasing with L<sup>1</sup>-data, we prove existence in the framework of entropy solutions. The approach adopted for the proof is based on a several step approximation method and by using a result in the case of a strictly increasing b.展开更多
文摘We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(v<sub>0</sub>))) - div(a(x,Dv) + F(v)) = f where the right hand side belongs to L<sup>1</sup>. The kernel k belongs to the large class of PC kernels. In particular, the case of fractional time derivatives of order α ∈ (0,1) is included. Assuming b nondecreasing with L<sup>1</sup>-data, we prove existence in the framework of entropy solutions. The approach adopted for the proof is based on a several step approximation method and by using a result in the case of a strictly increasing b.