A simple reversed phase HPLC method was developed for the determination of Putrescine, Cadaverine and Spermidine (a class of polyamines) in their benzoylated form from external known standards. In the optimization pro...A simple reversed phase HPLC method was developed for the determination of Putrescine, Cadaverine and Spermidine (a class of polyamines) in their benzoylated form from external known standards. In the optimization procedure, a number of parameters were examined: 1) Solvent used in the extraction of standard polyamines (diethyl ether versus chloroform);2) Solvent used in the elution of the polyamine (methanol versus acetonitrile);3) Mode of derivatization and extraction step(s) (derivatization and extraction performed together versus derivatization and extraction performed separately);and 4) Other instrumental parameters (such as UV detection wavelength, gradient profiles). The advantages of our method, relative to the standard Morgan method are: a) decreased chromatographic runtime, b) ease of preparation with good resolution, sensitivity, and reproducibility using a standard RP-HPLC method.展开更多
The effect of chronic ozone exposure to ischemia reperfusion (I/R) injury in isolated perfused rat hearts was previously demonstrated. The present study tested our hypothesis that chronic ozone exposure led to attenua...The effect of chronic ozone exposure to ischemia reperfusion (I/R) injury in isolated perfused rat hearts was previously demonstrated. The present study tested our hypothesis that chronic ozone exposure led to attenuation of polyamines in the heart, which may limit sensitivity to I/R. Sprague Dawley rats were continuously exposed for 8 hrs/day for 28 days to filtered air or 0.8 ppm ozone. Isolated hearts were previously subjected to 0.5 hour of global ischemia followed by 1 hour of reperfusion after which global polyamine content was examined between the two groups. Spermidine production was significantly increased in the experimental group compared to control group (of I/R hearts). These results suggest that ozone-induced sensitivity to chronic I/R injury activates myocardial polyamine stress response characterized by increased enzymatic activities and accumulation of spermidine. Collectively, these results suggest that I/R possibly disturbs polyamine metabolism, and increased oxidative stress and concomitant reduced myocardial cell viability.展开更多
文摘A simple reversed phase HPLC method was developed for the determination of Putrescine, Cadaverine and Spermidine (a class of polyamines) in their benzoylated form from external known standards. In the optimization procedure, a number of parameters were examined: 1) Solvent used in the extraction of standard polyamines (diethyl ether versus chloroform);2) Solvent used in the elution of the polyamine (methanol versus acetonitrile);3) Mode of derivatization and extraction step(s) (derivatization and extraction performed together versus derivatization and extraction performed separately);and 4) Other instrumental parameters (such as UV detection wavelength, gradient profiles). The advantages of our method, relative to the standard Morgan method are: a) decreased chromatographic runtime, b) ease of preparation with good resolution, sensitivity, and reproducibility using a standard RP-HPLC method.
文摘The effect of chronic ozone exposure to ischemia reperfusion (I/R) injury in isolated perfused rat hearts was previously demonstrated. The present study tested our hypothesis that chronic ozone exposure led to attenuation of polyamines in the heart, which may limit sensitivity to I/R. Sprague Dawley rats were continuously exposed for 8 hrs/day for 28 days to filtered air or 0.8 ppm ozone. Isolated hearts were previously subjected to 0.5 hour of global ischemia followed by 1 hour of reperfusion after which global polyamine content was examined between the two groups. Spermidine production was significantly increased in the experimental group compared to control group (of I/R hearts). These results suggest that ozone-induced sensitivity to chronic I/R injury activates myocardial polyamine stress response characterized by increased enzymatic activities and accumulation of spermidine. Collectively, these results suggest that I/R possibly disturbs polyamine metabolism, and increased oxidative stress and concomitant reduced myocardial cell viability.