In the current study,a modified sol-gel route was used to produce undoped and Sm^(3+)doped(1 mol%,3 mol%and 5 mol%)ZnO nanoparticles(NPs).The study of opto-structural properties of Sm^(3+)doped NPs was carried out bot...In the current study,a modified sol-gel route was used to produce undoped and Sm^(3+)doped(1 mol%,3 mol%and 5 mol%)ZnO nanoparticles(NPs).The study of opto-structural properties of Sm^(3+)doped NPs was carried out both experimentally and theoretically.Complete dissolution of Sm^(3+)ions into the ZnO lattice is obviously seen from X-ray diffraction(XRD)analysis.Morphological evolution with doping was studied using field emission scanning electron microscopy(FESEM)and transmission electron microscopy(TEM).X-ray photoelectron spectroscopy(XPS)was carried out to confirm the prese nce of Sm~(3+)on the doped NPs.Increasing dopant quantity results in a redshift of the NPs along with a reduction in bandgap with increasing abso rption in the visible range,and a minimum of 3.18 eV of optical bandgap for Zn_(0.97)Sm_(0.03)O is found.Photoluminescence spectroscopy reveals a drop in the recombination rate of electron-hole with increasing doping content till 3 mol%,followed by an increase of Zn_(0.95)Sm_(0.05)O.Photogenerated electron-hole pair recombination is revealed by the orange band in the luminescence spectra.Theoretical analysis was also carried out with density functional theory(DFT).This work also unfolds the fundamental understanding of the structural properties of the synthesized NPs to enhance photocatalytic activity successfully.Later,photocatalytic activity for the optimum composition,i.e.,3 mol%,was assessed experimentally.展开更多
文摘In the current study,a modified sol-gel route was used to produce undoped and Sm^(3+)doped(1 mol%,3 mol%and 5 mol%)ZnO nanoparticles(NPs).The study of opto-structural properties of Sm^(3+)doped NPs was carried out both experimentally and theoretically.Complete dissolution of Sm^(3+)ions into the ZnO lattice is obviously seen from X-ray diffraction(XRD)analysis.Morphological evolution with doping was studied using field emission scanning electron microscopy(FESEM)and transmission electron microscopy(TEM).X-ray photoelectron spectroscopy(XPS)was carried out to confirm the prese nce of Sm~(3+)on the doped NPs.Increasing dopant quantity results in a redshift of the NPs along with a reduction in bandgap with increasing abso rption in the visible range,and a minimum of 3.18 eV of optical bandgap for Zn_(0.97)Sm_(0.03)O is found.Photoluminescence spectroscopy reveals a drop in the recombination rate of electron-hole with increasing doping content till 3 mol%,followed by an increase of Zn_(0.95)Sm_(0.05)O.Photogenerated electron-hole pair recombination is revealed by the orange band in the luminescence spectra.Theoretical analysis was also carried out with density functional theory(DFT).This work also unfolds the fundamental understanding of the structural properties of the synthesized NPs to enhance photocatalytic activity successfully.Later,photocatalytic activity for the optimum composition,i.e.,3 mol%,was assessed experimentally.