期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于机器视觉的番茄内部品质预测
被引量:
10
1
作者
张亚静
sakae shibusawa
李民赞
《农业工程学报》
EI
CAS
CSCD
北大核心
2010年第S2期366-370,共5页
为了实现番茄内部品质的实施快速检测,利用机器视觉技术,从"定性"和"定量"两方面进行了番茄内部品质预测方法的研究。首先设计开发了番茄图像采集机器视觉系统,可分别从3个不同高度:0.5、1、1.5m和6个不同方向:上...
为了实现番茄内部品质的实施快速检测,利用机器视觉技术,从"定性"和"定量"两方面进行了番茄内部品质预测方法的研究。首先设计开发了番茄图像采集机器视觉系统,可分别从3个不同高度:0.5、1、1.5m和6个不同方向:上、下、左、右、前、后采集番茄图像。视觉系统利用4个卤素灯作为光源,内部亮度恒定为600lx。然后收集了68个不同生长阶段的番茄样本,样本根据是颜色从未成熟阶段(绿色)到成熟阶段(红色)被分为了5个等级。在利用开发的机器视觉系统采集了番茄样本的图像之后,通过RGB色彩模型、L*a*b*色彩模型和灰度共生矩阵(GLCM)计算番茄图像特征值,并将其输入BP神经网络,对糖度、酸度、氨基酸含量和水分含量共4种番茄内部品质进行预测。在"定量"预测中,分别建立了每种内部品质的预测模型。结果表明,酸度与图像特征之间的相关系数最高为0.536,定量预测精度还有待进一步提高。在"定性"预测中,利用BP神经网络,通过番茄内部属性含量的不同组合值预测番茄生长阶段,对隐层节点数和训练函数这两个重要的网络参数进行优化。试验中使用40个样本作为训练集建立模型,使用28个样本作为测试集,其中22个样本预测正确,结果表明利用机器视觉方法预测番茄内部品质具有较好应用前景。
展开更多
关键词
农产品
神经网络
图像处理
下载PDF
职称材料
题名
基于机器视觉的番茄内部品质预测
被引量:
10
1
作者
张亚静
sakae shibusawa
李民赞
机构
中国农业大学现代精细农业系统集成研究教育部重点实验室
东京农工大学农学部
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2010年第S2期366-370,共5页
基金
国家自然科学基金(30871453
U0931001)
文摘
为了实现番茄内部品质的实施快速检测,利用机器视觉技术,从"定性"和"定量"两方面进行了番茄内部品质预测方法的研究。首先设计开发了番茄图像采集机器视觉系统,可分别从3个不同高度:0.5、1、1.5m和6个不同方向:上、下、左、右、前、后采集番茄图像。视觉系统利用4个卤素灯作为光源,内部亮度恒定为600lx。然后收集了68个不同生长阶段的番茄样本,样本根据是颜色从未成熟阶段(绿色)到成熟阶段(红色)被分为了5个等级。在利用开发的机器视觉系统采集了番茄样本的图像之后,通过RGB色彩模型、L*a*b*色彩模型和灰度共生矩阵(GLCM)计算番茄图像特征值,并将其输入BP神经网络,对糖度、酸度、氨基酸含量和水分含量共4种番茄内部品质进行预测。在"定量"预测中,分别建立了每种内部品质的预测模型。结果表明,酸度与图像特征之间的相关系数最高为0.536,定量预测精度还有待进一步提高。在"定性"预测中,利用BP神经网络,通过番茄内部属性含量的不同组合值预测番茄生长阶段,对隐层节点数和训练函数这两个重要的网络参数进行优化。试验中使用40个样本作为训练集建立模型,使用28个样本作为测试集,其中22个样本预测正确,结果表明利用机器视觉方法预测番茄内部品质具有较好应用前景。
关键词
农产品
神经网络
图像处理
Keywords
agricultural products,neural networks,image processing
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于机器视觉的番茄内部品质预测
张亚静
sakae shibusawa
李民赞
《农业工程学报》
EI
CAS
CSCD
北大核心
2010
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部