α-Synuclein is the major component of the filamentous Lewy bodies and Lewy neurites that define neuropathological features and dementia with Lewy bodies. To investigate the role of dopamine (DA) in α-synuclein fibri...α-Synuclein is the major component of the filamentous Lewy bodies and Lewy neurites that define neuropathological features and dementia with Lewy bodies. To investigate the role of dopamine (DA) in α-synuclein fibrillation, the structural propensities to form oligomers at the initial stage fibrillation were studied using size exclusion chromatography and various biophysical techniques. Interactions with DA were observed for wild-type α-synuclein and its mutants, A30P, E46K and A53T, using electrospray ionization mass spectrometry (ESI-MS). The results of ESI-MS indicate that an intact α-synuclein, which was not oxidized, had an ability to bind with three molecules of DA at the initial stage. Furthermore, upon binding to DA, α-synuclein oligomerizes to higher molecular weight species. These oligomers are structurally different from amyloid fibrils, as confirmed by thioflavin T and CD analysis.展开更多
α-Synuclein is the major component of the filamentous Lewy bodies and Lewy neurites that define neuropathological features of Parkinson’s disease and dementia with Lewy bodies. To investigate the oligomerization pro...α-Synuclein is the major component of the filamentous Lewy bodies and Lewy neurites that define neuropathological features of Parkinson’s disease and dementia with Lewy bodies. To investigate the oligomerization process of α-synuclein in association with dopamine (DA), the structural propensities to form oligomers were studied using NMR and other biophysical techniques. The1H-15N HSQC spectra indicated that both N- and C-termini interacted with DA. Although interactions with DA were also observed in the presence of glutathione by ESI-MS, the significant suppression of oligomerization was observed in the size exclusion chromatography, suggesting that oxidations of α-synuclein are required for its oligomerization.展开更多
文摘α-Synuclein is the major component of the filamentous Lewy bodies and Lewy neurites that define neuropathological features and dementia with Lewy bodies. To investigate the role of dopamine (DA) in α-synuclein fibrillation, the structural propensities to form oligomers at the initial stage fibrillation were studied using size exclusion chromatography and various biophysical techniques. Interactions with DA were observed for wild-type α-synuclein and its mutants, A30P, E46K and A53T, using electrospray ionization mass spectrometry (ESI-MS). The results of ESI-MS indicate that an intact α-synuclein, which was not oxidized, had an ability to bind with three molecules of DA at the initial stage. Furthermore, upon binding to DA, α-synuclein oligomerizes to higher molecular weight species. These oligomers are structurally different from amyloid fibrils, as confirmed by thioflavin T and CD analysis.
文摘α-Synuclein is the major component of the filamentous Lewy bodies and Lewy neurites that define neuropathological features of Parkinson’s disease and dementia with Lewy bodies. To investigate the oligomerization process of α-synuclein in association with dopamine (DA), the structural propensities to form oligomers were studied using NMR and other biophysical techniques. The1H-15N HSQC spectra indicated that both N- and C-termini interacted with DA. Although interactions with DA were also observed in the presence of glutathione by ESI-MS, the significant suppression of oligomerization was observed in the size exclusion chromatography, suggesting that oxidations of α-synuclein are required for its oligomerization.