Bifenthrin is an insecticide which is used to control insects, mites, and ticks. It poses a solemn en-vironmental threat and health risk to living organisms. It may be bioaccumulated or biomagnified at different troph...Bifenthrin is an insecticide which is used to control insects, mites, and ticks. It poses a solemn en-vironmental threat and health risk to living organisms. It may be bioaccumulated or biomagnified at different trophic levels in the food chain by biota. Microbes are hidden creature of earth’s biodiversity. For isolation of bifenthrin degrading bacteria, rhizospheric soil samples of plants like Pisum sativum, Triticun aestvum, Chenopodium album were taken from tannery solid waste, Kasur, Pakistan. Enrichment culture techniques were used for the isolation of bacterial strains that showed luxurious growth on minimal growth media with bifenthrin dose was selected for biodegradation study. Bacteria were further screened out based on their morphological, biochemical parameters and degradation efficiency. Furthermore the effect of different growth factors like temperature, pH, inoculum concencentration, minimal inhibitory concentration of heavy metals and antibiotics were also studied. Bacterial strains of Xanthomonas and Bacillus sp. were identified as efficient degrading microbes. Maximum bifenthrin utilization were observed at 25°C (pH 7), with 500 μL inoculum of Bacillus sp., while Xanthomonas sp. gave optimm utilization at 30°C (pH 7) at the same inoculum volume of bacteria. The Rf values of Bacillus sp. and Xanthomonas sp. were 0.91 and 0.90 respectively, which indicated their potential to metabolize bifenthrin into nontoxic forms. These strains can be used to clean up the sites polluted with pesticides and tannery wastes when present in rhizosphere of plants.展开更多
Recommender systems are rapidly transforming the digital world into intelligent information hubs.The valuable context information associated with the users’prior transactions has played a vital role in determining th...Recommender systems are rapidly transforming the digital world into intelligent information hubs.The valuable context information associated with the users’prior transactions has played a vital role in determining the user preferences for items or rating prediction.It has been a hot research topic in collaborative filtering-based recommender systems for the last two decades.This paper presents a novel Context Based Rating Prediction(CBRP)model with a unique similarity scoring estimation method.The proposed algorithm computes a context score for each candidate user to construct a similarity pool for the given subject user-item pair and intuitively choose the highly influential users to forecast the item ratings.The context scoring strategy has an inherent capability to incorporate multiple conditional factors to filter down the most relevant recommendations.Compared with traditional similarity estimation methods,CBRP makes it possible for the full use of neighboring collaborators’choice on various conditions.We conduct experiments on three publicly available datasets to evaluate our proposed method with random user-item pairs and got considerable improvement in prediction accuracy over the standard evaluation measures.Also,we evaluate prediction accuracy for every user-item pair in the system and the results show that our proposed framework has outperformed existing methods.展开更多
Myzus persicae(M.persicae)is now considered a threat to agricultural crops due to economic losses.Numerous synthetic insecticides applied every year against M.persicae,are reported to be unsafe for environment,humans,...Myzus persicae(M.persicae)is now considered a threat to agricultural crops due to economic losses.Numerous synthetic insecticides applied every year against M.persicae,are reported to be unsafe for environment,humans,and beneficial insects.Furthermore,several species of Myzus have been found to develop resistance due to over application of these insecticides.Therefore,it is required to find some novel insecticide that would be safe for the environment as well as for humans.In the current study,two major pure constituentsα-pinene andβ-caryophyllene were evaluated for their insecticidal potential against M.persicae using a fumigant toxicity assay.Furthermore,impact ofα-pinene andβ-caryophyllene on expression of five different genes,e.g.,HSP 60,FPPS I,OSD,TOL and ANT responsible for reproduction,dispersion,and growth of M.persicae has also been investigated.To perform fumigant toxicity assay,five different concentrations(3.5,4,4.5,5 and 6μL L−1)ofα-pinene andβ-caryophyllene were prepared.Lethal concentration(LC)was calculated,and gene expression studies were executed through qRT PCR at LC30 ofα-pinene andβ-caryophyllene.Both constituents demonstrated excellent fumigant toxicity effects against M.persicae at all five concentrations.However,α-pinene shows significantly better results(98%)as compared toβ-caryophyllene(80%)after 72 h at 6μL L−1 of dose.The highest upregulation in expression was demonstrated at LC30 dose ofα-pinene in five in three out of five genes understudy(TOL,ANT,and FPPS I).Conversely,two genes HSP 60 and OSD demonstrated downregulation at LC30 dose ofβ-caryophyllene.Conclusively,our results highlighted the promising insecticidal potential of both compoundsα-pinene andβ-caryophylleneby interfering with the reproduction and development related processes in M.persicae,allowing us to recommend the phytoconstituents under investigation as an ecofriendly alternative to synthetic insecticides.展开更多
文摘Bifenthrin is an insecticide which is used to control insects, mites, and ticks. It poses a solemn en-vironmental threat and health risk to living organisms. It may be bioaccumulated or biomagnified at different trophic levels in the food chain by biota. Microbes are hidden creature of earth’s biodiversity. For isolation of bifenthrin degrading bacteria, rhizospheric soil samples of plants like Pisum sativum, Triticun aestvum, Chenopodium album were taken from tannery solid waste, Kasur, Pakistan. Enrichment culture techniques were used for the isolation of bacterial strains that showed luxurious growth on minimal growth media with bifenthrin dose was selected for biodegradation study. Bacteria were further screened out based on their morphological, biochemical parameters and degradation efficiency. Furthermore the effect of different growth factors like temperature, pH, inoculum concencentration, minimal inhibitory concentration of heavy metals and antibiotics were also studied. Bacterial strains of Xanthomonas and Bacillus sp. were identified as efficient degrading microbes. Maximum bifenthrin utilization were observed at 25°C (pH 7), with 500 μL inoculum of Bacillus sp., while Xanthomonas sp. gave optimm utilization at 30°C (pH 7) at the same inoculum volume of bacteria. The Rf values of Bacillus sp. and Xanthomonas sp. were 0.91 and 0.90 respectively, which indicated their potential to metabolize bifenthrin into nontoxic forms. These strains can be used to clean up the sites polluted with pesticides and tannery wastes when present in rhizosphere of plants.
基金This work is supported by National Natural Science Foundation of China(No.61672133)Sichuan Science and Technology Program(No.2019YFG0535)the 111 Project(No.B17008).
文摘Recommender systems are rapidly transforming the digital world into intelligent information hubs.The valuable context information associated with the users’prior transactions has played a vital role in determining the user preferences for items or rating prediction.It has been a hot research topic in collaborative filtering-based recommender systems for the last two decades.This paper presents a novel Context Based Rating Prediction(CBRP)model with a unique similarity scoring estimation method.The proposed algorithm computes a context score for each candidate user to construct a similarity pool for the given subject user-item pair and intuitively choose the highly influential users to forecast the item ratings.The context scoring strategy has an inherent capability to incorporate multiple conditional factors to filter down the most relevant recommendations.Compared with traditional similarity estimation methods,CBRP makes it possible for the full use of neighboring collaborators’choice on various conditions.We conduct experiments on three publicly available datasets to evaluate our proposed method with random user-item pairs and got considerable improvement in prediction accuracy over the standard evaluation measures.Also,we evaluate prediction accuracy for every user-item pair in the system and the results show that our proposed framework has outperformed existing methods.
基金funded by the Researchers Supporting Project Number(RSP2023R123),King Saud University,Riyadh,Saudi Arabia.
文摘Myzus persicae(M.persicae)is now considered a threat to agricultural crops due to economic losses.Numerous synthetic insecticides applied every year against M.persicae,are reported to be unsafe for environment,humans,and beneficial insects.Furthermore,several species of Myzus have been found to develop resistance due to over application of these insecticides.Therefore,it is required to find some novel insecticide that would be safe for the environment as well as for humans.In the current study,two major pure constituentsα-pinene andβ-caryophyllene were evaluated for their insecticidal potential against M.persicae using a fumigant toxicity assay.Furthermore,impact ofα-pinene andβ-caryophyllene on expression of five different genes,e.g.,HSP 60,FPPS I,OSD,TOL and ANT responsible for reproduction,dispersion,and growth of M.persicae has also been investigated.To perform fumigant toxicity assay,five different concentrations(3.5,4,4.5,5 and 6μL L−1)ofα-pinene andβ-caryophyllene were prepared.Lethal concentration(LC)was calculated,and gene expression studies were executed through qRT PCR at LC30 ofα-pinene andβ-caryophyllene.Both constituents demonstrated excellent fumigant toxicity effects against M.persicae at all five concentrations.However,α-pinene shows significantly better results(98%)as compared toβ-caryophyllene(80%)after 72 h at 6μL L−1 of dose.The highest upregulation in expression was demonstrated at LC30 dose ofα-pinene in five in three out of five genes understudy(TOL,ANT,and FPPS I).Conversely,two genes HSP 60 and OSD demonstrated downregulation at LC30 dose ofβ-caryophyllene.Conclusively,our results highlighted the promising insecticidal potential of both compoundsα-pinene andβ-caryophylleneby interfering with the reproduction and development related processes in M.persicae,allowing us to recommend the phytoconstituents under investigation as an ecofriendly alternative to synthetic insecticides.