Isaac River catchment, which is located within Fitzroy basin in Central Queensland, Australia is mostly a semi-arid region, sparsely populated, but rife with economic activities such as mining, grazing, cropping and p...Isaac River catchment, which is located within Fitzroy basin in Central Queensland, Australia is mostly a semi-arid region, sparsely populated, but rife with economic activities such as mining, grazing, cropping and production forestry. Hydro-meteorological data over the past several decades reveal that the catchment is experiencing increasing variability in precipitation and streamflow contributing to more severe droughts and floods supposedly due to climate change. The exposure of the economic activities in the catchment to the vagaries of nature and the possible impacts of climate change on the stream flow regime are to be analyzed. For the purpose, SWAT model was adopted to capture the dynamics of the catchment. During calibration of the model 12 parameters were found to be significant which yielded a R2 value of 0.73 for calibration and 0.66 for validation. In the next stage, six GCMs from CMIP3 namely, CGCM3.1/T47, CNRM-CM3, GFDL-CM2.1, IPSLCM4, MIROC3.2 (medres) and MRI CGCM2.3.2 were selected for climate change projections in the Fitzroy basin under a very high emissions scenario (A2), a medium emissions scenario (A1B) and a low emissions scenario (B1) for two future periods (2046-2064) and (2080-2100). All GCMs showed consistent increases in temperature, and as expected, highest rate for A2 and lowest rate for B1. Precipitation predictions were mixed-reductions in A2 and increases in A1B and B1, and more variations in distant future compared to near future. When the projected temperatures and precipitation were inputted into the SWAT model, and the model outputs were compared with the baseline period (1980-2010), the picture that emerged depicted worsening water resources variability.展开更多
Greater Zab is the largest tributary of the Tigris River in lraq where the catchment area is currently being plagued by water scarcity and pollution problems. Contemporary studies have revealed that blue and green wat...Greater Zab is the largest tributary of the Tigris River in lraq where the catchment area is currently being plagued by water scarcity and pollution problems. Contemporary studies have revealed that blue and green waters of the basin have been manifesting increasing variability contributing to more severe droughts and floods apparently due to climate change. In order to gain greater appreciation of the impacts of climate change on water resources in the study area in near and distant future, SWAT (Soil and Water Assessment Tool) has been used. The model is first tested for its suitability in capturing the basin characteristics, and then, forecasts from six GCMs (general circulation models) with about half-a-century lead time to 2046-2064 and one-century lead time to 2080-2100 are incorporated to evaluate the impacts of climate change on water resources under three emission scenarios: A 1 B, A2 and BI. The results showed worsening water resources regime into the future.展开更多
An analysis of historical data of Fitzroy River, which lies in the east coast of Australia, reveals that there is an increasing trend in extreme floods and droughts apparently attributable to increased variability of ...An analysis of historical data of Fitzroy River, which lies in the east coast of Australia, reveals that there is an increasing trend in extreme floods and droughts apparently attributable to increased variability of blue and green waters which could be due to climate change. In order to get a better understanding of the impacts of climate change on the water resources of the study area for near future as well as distant future, SWAT (soil and water assessment tool) model was applied. The model is first tested for its suitability in capturing the basin characteristics with available data, and then, forecasts from six GCMs (general circulation model) with about half-a-century lead time to 2046-2064 and about one-century lead time to 2080-2100 are incorporated to evaluate the impacts of climate change under three marker emission scenarios: A2, A1B and B 1. The results showed worsening water resources regime into the future.展开更多
文摘Isaac River catchment, which is located within Fitzroy basin in Central Queensland, Australia is mostly a semi-arid region, sparsely populated, but rife with economic activities such as mining, grazing, cropping and production forestry. Hydro-meteorological data over the past several decades reveal that the catchment is experiencing increasing variability in precipitation and streamflow contributing to more severe droughts and floods supposedly due to climate change. The exposure of the economic activities in the catchment to the vagaries of nature and the possible impacts of climate change on the stream flow regime are to be analyzed. For the purpose, SWAT model was adopted to capture the dynamics of the catchment. During calibration of the model 12 parameters were found to be significant which yielded a R2 value of 0.73 for calibration and 0.66 for validation. In the next stage, six GCMs from CMIP3 namely, CGCM3.1/T47, CNRM-CM3, GFDL-CM2.1, IPSLCM4, MIROC3.2 (medres) and MRI CGCM2.3.2 were selected for climate change projections in the Fitzroy basin under a very high emissions scenario (A2), a medium emissions scenario (A1B) and a low emissions scenario (B1) for two future periods (2046-2064) and (2080-2100). All GCMs showed consistent increases in temperature, and as expected, highest rate for A2 and lowest rate for B1. Precipitation predictions were mixed-reductions in A2 and increases in A1B and B1, and more variations in distant future compared to near future. When the projected temperatures and precipitation were inputted into the SWAT model, and the model outputs were compared with the baseline period (1980-2010), the picture that emerged depicted worsening water resources variability.
文摘Greater Zab is the largest tributary of the Tigris River in lraq where the catchment area is currently being plagued by water scarcity and pollution problems. Contemporary studies have revealed that blue and green waters of the basin have been manifesting increasing variability contributing to more severe droughts and floods apparently due to climate change. In order to gain greater appreciation of the impacts of climate change on water resources in the study area in near and distant future, SWAT (Soil and Water Assessment Tool) has been used. The model is first tested for its suitability in capturing the basin characteristics, and then, forecasts from six GCMs (general circulation models) with about half-a-century lead time to 2046-2064 and one-century lead time to 2080-2100 are incorporated to evaluate the impacts of climate change on water resources under three emission scenarios: A 1 B, A2 and BI. The results showed worsening water resources regime into the future.
文摘An analysis of historical data of Fitzroy River, which lies in the east coast of Australia, reveals that there is an increasing trend in extreme floods and droughts apparently attributable to increased variability of blue and green waters which could be due to climate change. In order to get a better understanding of the impacts of climate change on the water resources of the study area for near future as well as distant future, SWAT (soil and water assessment tool) model was applied. The model is first tested for its suitability in capturing the basin characteristics with available data, and then, forecasts from six GCMs (general circulation model) with about half-a-century lead time to 2046-2064 and about one-century lead time to 2080-2100 are incorporated to evaluate the impacts of climate change under three marker emission scenarios: A2, A1B and B 1. The results showed worsening water resources regime into the future.