期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cottonseed Protein, Oil, and Mineral Nutrition in Near-Isogenic <i>Gossypium hirsutum</i>Cotton Lines Expressing Leaf Color Phenotypes under Field Conditions
1
作者 Nacer Bellaloui rickie B. Turley +1 位作者 salliana r. stetina William T. Molin 《Food and Nutrition Sciences》 2019年第7期834-859,共26页
Information about the effects of phenotype traits on cottonseed protein, oil, and nutrients is scarce. The objective of this research was to investigate the effects of leaf color trait on seed nutrition in near-isogen... Information about the effects of phenotype traits on cottonseed protein, oil, and nutrients is scarce. The objective of this research was to investigate the effects of leaf color trait on seed nutrition in near-isogenic Gossypium hirsutum cotton expressing green (G) and yellow (Y) leaf color phenotypes. Our hypothesis was that leaf color can influence the accumulation of nutrients in seeds. Sets of isogenic lines were: DES 119 (G) and DES 119 (Y);DP 5690 (G) and DP 5690 (Y);MD 51ne (G) and MD 51ne (Y);SG 747 (G) and SG 747 (Y). Each NIL set is 98.44 % identical. Parent line SA 30 (P) was used as the control. The experiment was repeated for two years (2014 and 2015). The results showed that, in 2014, seed oil in DES 119 (G) and SG 747 (G) were significantly higher than their equivalent yellow lines. Green lines showed higher content of phosphorus compared with yellow lines. Higher levels of Cu, Fe, Mn, Ni, and Zn were recorded in DES 119 (G) and MD 51ne (G). In 2015, seed protein, oil, C, N, P, B, Cu, and Fe were higher in green lines than in yellow lines. There was a significant correlation between protein and nutrients, and between oil and nutrients in 2015, but not in 2014 as the temperature was warmer in 2015 than in 2014. This research demonstrated that leaf color can alter seed composition and mineral nutrition under certain environmental growing conditions such as temperature. 展开更多
关键词 Isogenic COTTON COTTONSEED SEED Protein SEED OIL SEED Composition
下载PDF
Soybean Seed Nutrition as Affected by Cotton, Wheat, and Fallow Rotation
2
作者 Nacer Bellaloui salliana r. stetina William T. Molin 《Food and Nutrition Sciences》 2014年第16期1605-1619,共15页
Limited information is available on the effects of crop rotation on seed nutrition. Therefore, the objective of the current research was to determine whether crop rotations are beneficial to soybean seed nutrition for... Limited information is available on the effects of crop rotation on seed nutrition. Therefore, the objective of the current research was to determine whether crop rotations are beneficial to soybean seed nutrition for the first two complete rotation cycles in an experiment conducted from 2007 through 2012. The first complete rotation cycle (experiment one) was conducted in 2009, then repeated in 2010, and the second complete rotation cycle (experiment two) was conducted in 2011, and then repeated in 2012. The rotation sequences were: wheat-late cotton-fallow-soybean (WCFS), fallow-cotton-wheat-soybean (FCWS), and fallow-cotton-fallow-soybean (FCFS). The results showed that WCFS and FCFS resulted in higher seed oil, palmitic and stearic acids, glucose, sucrose, fructose, Fe, P, and B. No consistent effects on seed protein, oleic acid, linoleic acid, linolenic acid, raffinose, stachyose, and Mn contents were observed. These changes were accompanied by higher P, K, B, Fe in soil and N, K, and B in leaves, indicating that soil and leaf nutrients may result in continuous supply and mobility of nutrients from leaves to seed during seed fill. Our research demonstrated that crop rotation management can result in seed nutrient changes, affecting seed quality. 展开更多
关键词 FATTY ACIDS NUTRIENTS Oil Protein Sugars
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部