With the emergence of the COVID19 virus in late 2019 and the declaration that the virus is a worldwide pandemic,health organizations and governments have begun to implement severe health precautions to reduce the spre...With the emergence of the COVID19 virus in late 2019 and the declaration that the virus is a worldwide pandemic,health organizations and governments have begun to implement severe health precautions to reduce the spread of the virus and preserve human lives.The enforcement of social distancing at work environments and public areas is one of these obligatory precautions.Crowd management is one of the effective measures for social distancing.By reducing the social contacts of individuals,the spread of the disease will be immensely reduced.In this paper,a model for crowd counting in public places of high and low densities is proposed.The model works under various scene conditions and with no prior knowledge.A Deep CNN model(DCNN)is built based on convolutional neural network(CNN)structure with small kernel size and two fronts.To increase the efficiency of the model,a convolutional neural network(CNN)as the front-end and a multi-column layer with Dilated Convolution as the back-end were chosen.Also,the proposed method accepts images of arbitrary sizes/scales as inputs from different cameras.To evaluate the proposed model,a dataset was created from images of Saudi people with traditional and non-traditional Saudi outfits.The model was also trained and tested on some existing datasets.Compared to current counting methods,the results show that the proposed model has significantly improved efficiency and reduced the error rate.We achieve the lowest MAE by 67%,32%.and 15.63%and lowest MSE by around 47%,15%and 8.1%than M-CNN,Cascaded-MTL,and CSRNet respectively.展开更多
This paper proposes a novel,efficient and affordable approach to detect the students’engagement levels in an e-learning environment by using webcams.Our method analyzes spatiotemporal features of e-learners’micro bo...This paper proposes a novel,efficient and affordable approach to detect the students’engagement levels in an e-learning environment by using webcams.Our method analyzes spatiotemporal features of e-learners’micro body gestures,which will be mapped to emotions and appropriate engagement states.The proposed engagement detection model uses a three-dimensional convolutional neural network to analyze both temporal and spatial information across video frames.We follow a transfer learning approach by using the C3D model that was trained on the Sports-1M dataset.The adopted C3D model was used based on two different approaches;as a feature extractor with linear classifiers and a classifier after applying fine-tuning to the pretrained model.Our model was tested and its performance was evaluated and compared to the existing models.It proved its effectiveness and superiority over the other existing methods with an accuracy of 94%.The results of this work will contribute to the development of smart and interactive e-learning systems with adaptive responses based on users’engagement levels.展开更多
基金the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia,under grant No.(DF-352-165-1441).The authors,therefore,gratefully acknowledge DSR for their technical and financial support.
文摘With the emergence of the COVID19 virus in late 2019 and the declaration that the virus is a worldwide pandemic,health organizations and governments have begun to implement severe health precautions to reduce the spread of the virus and preserve human lives.The enforcement of social distancing at work environments and public areas is one of these obligatory precautions.Crowd management is one of the effective measures for social distancing.By reducing the social contacts of individuals,the spread of the disease will be immensely reduced.In this paper,a model for crowd counting in public places of high and low densities is proposed.The model works under various scene conditions and with no prior knowledge.A Deep CNN model(DCNN)is built based on convolutional neural network(CNN)structure with small kernel size and two fronts.To increase the efficiency of the model,a convolutional neural network(CNN)as the front-end and a multi-column layer with Dilated Convolution as the back-end were chosen.Also,the proposed method accepts images of arbitrary sizes/scales as inputs from different cameras.To evaluate the proposed model,a dataset was created from images of Saudi people with traditional and non-traditional Saudi outfits.The model was also trained and tested on some existing datasets.Compared to current counting methods,the results show that the proposed model has significantly improved efficiency and reduced the error rate.We achieve the lowest MAE by 67%,32%.and 15.63%and lowest MSE by around 47%,15%and 8.1%than M-CNN,Cascaded-MTL,and CSRNet respectively.
基金Makkah Digital Gate Initiatives funded this research work under Grant Number(MDP-IRI-8-2020).Emirate of Makkah Province and King Abdulaziz University,Jeddah,Saudi Arabia.https://science.makkah.kau.edu.sa/Default-101888-AR.
文摘This paper proposes a novel,efficient and affordable approach to detect the students’engagement levels in an e-learning environment by using webcams.Our method analyzes spatiotemporal features of e-learners’micro body gestures,which will be mapped to emotions and appropriate engagement states.The proposed engagement detection model uses a three-dimensional convolutional neural network to analyze both temporal and spatial information across video frames.We follow a transfer learning approach by using the C3D model that was trained on the Sports-1M dataset.The adopted C3D model was used based on two different approaches;as a feature extractor with linear classifiers and a classifier after applying fine-tuning to the pretrained model.Our model was tested and its performance was evaluated and compared to the existing models.It proved its effectiveness and superiority over the other existing methods with an accuracy of 94%.The results of this work will contribute to the development of smart and interactive e-learning systems with adaptive responses based on users’engagement levels.